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Abstract 

The global burden of pulmonary disease highlights an overwhelming need in improving our understanding of lung 
development, disease, and treatment. It also calls for further advances in our ability to engineer the pulmonary system 
at cellular and tissue levels. The discovery of human pluripotent stem cells (hPSCs) offsets the relative inaccessibility 
of human lungs for studying developmental programs and disease mechanisms, all the while offering a potential 
source of cells and tissue for regenerative interventions. This review offers a perspective on where the lung stem cell 
field stands in terms of accomplishing these ambitious goals. We will trace the known stages and pathways involved 
in in vivo lung development and how they inspire the directed differentiation of stem and progenitor cells in vitro. We 
will also recap the efforts made to date to recapitulate the lung stem cell niche in vitro via engineered cell–cell and 
cell-extracellular matrix (ECM) interactions.
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Introduction
The mammalian respiratory system is a concert between 
two very elaborate branching structures: the pulmo-
nary epithelium which transports air to the alveoli, and 
the vasculature which carries blood through the alveoli 
for gas exchange [1]. The pulmonary epithelium is con-
tinually lined with distinct populations of progenitor 
and specialized cells whose functions are defined by 
their location along the branched network. For instance, 
the proximal lung, comprising the trachea and bron-
chi, expresses a pseudostratified epithelium including 
basal cells that are the stem cells of the airway, goblet 
cells that secrete mucus, ciliated cells that move mucus 
in a cephalic direction along the airway, and neuroendo-
crine cells that serve as airway sensors [1, 2]. In compari-
son, 95% of the distal lung is lined with thin, elongated 
type 1 alveolar epithelial cells (AEC1) that facilitate gas 
exchange. The remaining 5% of alveolar surface is domi-
nated by surfactant-producing type 2 alveolar epithe-
lial cells (AEC2) [3]. Additionally, the lung epithelium is 

surrounded by a mesenchymal compartment that com-
prises a wide variety of cell types such as fibroblasts, 
endothelial cells, and smooth muscle cells.

Lung organogenesis is a highly elaborate and coordi-
nated process. Most of what we know about the devel-
oping human lung comes from studying rodent models. 
However, there are apparent discrepancies between 
human versus rodent lung development. For example, 
alveolarization is initiated only after birth in rodent lungs 
[4, 5]. In contrast, alveolar maturation begins prior to 
birth in human lungs [1]. There are also differences in the 
population and location of certain stem and progenitor 
cells in the lungs of both species [1]. For instance, basal 
cells line the entire conducting airway in humans, but are 
restricted to the trachea and main stem bronchi in mice 
[6, 7]. Additionally, the alveoli and bronchioles in mouse 
lungs maintain a population of bronchio-alveolar stem 
cells (BASCs) that can give rise to both proximal and dis-
tal lung epithelial cell types [5, 8–10]. However, the pres-
ence of BASCs in human lungs remains uncertain [11]. 
As will be revealed later, there are also inherent differ-
ences in the genes and signaling pathways involved in the 
temporal specific regulation of lung development among 
both species [12–14].
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Thus, there is a gaping need for in vitro platforms that 
can closely recapitulate the complexity of human lung 
development and physiology with improved fidelity. 
Embryonic stem cells (ESCs) and induced pluripotent 
stem cells (iPSCs), collectively referred to as human pluri-
potent stem cells (hPSCs) provide a unique opportunity 
to apply the developmental signaling mechanisms under-
stood from native embryogenesis to recapitulate key 
aspects of human lung development that were previously 
unfeasible to study [1]. While ESCs have provided much 
needed insight into the derivation of lung cells, their use 
toward clinical research and application is challenged by 
limited availability and ethical concerns [15]. The use of 
iPSCs, that can be induced to a pluripotent status from 
somatic cells not only offsets these limitations, but also 
realizes the promise of personalized medicine as such cell 
lines can be generated from any individual [16]. Person-
alized disease modeling and drug screening immediately 
comes to mind as some of the potential outcomes of iPSC 
research. Currently, hPSC-derived lung epithelial cells 
possess an immature phenotype unfit for transplantation, 
leaving many areas of active investigation [17, 18]. Gen-
erating cells and eventually, tissues and organs for clinical 
use remains the crown jewel of the lung field.

In vitro recapitulation of the developmental 
program of the lung
Prior studies have characterized the adult lung as a rela-
tively quiescent organ with extremely low levels of cel-
lular turnover and a limited capacity for regeneration 
[19]. Only recently has this slow but continuous renewal 
of lung tissue by endogenous stem and progenitor cells 
garnered interest and appreciation [20]. Several attempts 
have been made to recapitulate lung development via 
in vitro hPSC differentiation; gradually progressing from 
inducing progenitor stages such as definitive endoderm 
[21–24], and anterior foregut endoderm [25, 26] to deriv-
ing lung-specific epithelial progenitors [14, 27, 28] and 
further to specialized respiratory epithelial cell types 
[29–34]. Provided below is an up-to-date description 
of the differentiation process as inspired by the in  vivo 
developmental program of the murine lung.

Definitive endoderm
The lung epithelium, purely of endodermal origin, 
emerges from a small population of Nkx2.1 positive pro-
genitor cells. Canonical Wnt/ β-catenin signaling and 
Transforming Growth Factor-β (TGF-β) signaling via 
Nodal drives the initial specification of primitive streak 
and then endodermal lineage in the embryo; cells that 
ingress through the primitive streak experiencing greater 
Nodal signaling are specified as definitive endoderm (DE) 
(Fig. 1a) [22]. Accordingly, DE induction is also the first 
act in hPSC differentiation into specialized pulmonary 

Fig. 1  Directing lung stem cell differentiation in vitro via introduction of signaling ligands or small-molecule regulators mimicking in vivo lung 
development. a In mid-gastrula stage, DE elongates from the anterior end of primitive streak. The Nodalhigh region gives rise to the future foregut. 
b The AP axis along the gut tube is established at the end of gastrulation, regulated by the molecular gradient of ligands and antagonists of Wnt, 
Fgf4, and Bmp signaling. c The ventralization of foregut is regulated by the gradient of Wnt2/2b and Bmp, and its completion is marked by the 
emergence of Nkx2.1-positive lung progenitor cells. d The proximal–distal patterning and branching morphogenesis of developing lung is guided 
by a lateral inhibition mechanism of Fgf10. A/P, anterior/posterior. P/D, proximal/distal. D/V, dorsal/ventral



Page 3 of 12Varghese et al. Stem Cell Research & Therapy          (2022) 13:161 	

epithelial cells in  vitro [35]. Activin A, a nodal protein 
alternative is commonly used to specify DE in in  vitro 
stem cell differentiation [23, 24, 36].

Anterior–posterior (AP) patterning of the gut tube
After gastrulation (E7.5-9.0 in mice), the DE folds to form 
a primitive gut tube that further differentiates along the 
AP axis into several organ-specific epithelial lineages that 
eventually give rise to most organs in the digestive system 
and the lung [37]. Endodermal patterning is inherently 
driven by the programmed crosstalk between the DE and 
its surrounding mesenchyme via Wnt, Bone morphoge-
netic protein 4 (Bmp4), retinoid acid (RA) and Fibroblast 
growth factor 4 (Fgf4) signaling, resulting in the Sox2high 
anterior foregut, Pdx1high posterior foregut, and Cdxhigh 
hindgut at E8.5 of mouse embryogenesis (Fig.  1b) [38–
41]. Specifically, the esophagus, trachea, stomach, lungs, 
thyroid, liver, and pancreas are derived from the foregut, 
while the small and large intestines are derived from the 
midgut and hindgut, respectively [38].

Within the foregut, the lung is further specified in the 
anterior portion, known as the anterior foregut endo-
derm (AFE). Accordingly, deriving AFE cells from DE 
marks the next stage in hPSC differentiation into lung 
epithelium. Established cocktails for in vitro DE anterior-
ization usually include a combination of BMP and TGF-β 
inhibition. Some known examples include the com-
bined use of NOGGIN (BMP inhibitor) and SB431542 
(TGF-β inhibitor) or Dorsomorphin (BMP inhibitor) and 
SB431542 (TGF-β inhibitor) [25, 27].

Dorsal–ventral (DV) patterning of the AFE
Signals from the surrounding mesenchyme also establish 
a gradient along the DV axis of the AFE [42]. During this 
time in development (E9.0 in mice), one of the earliest 
markers of the lung epithelium, Nkx2.1 is specified in a 
small group of cells located along the ventral side of the 
AFE, marking the start of the embryonic phase of lung 
development (spanning up to E12.5 in mice) [43–46]. 
Although the emergence of lung progenitors is marked 
by the induction of Nkx2.1 expression, the deletion of 
Nkx2.1 gene in mice leads to abnormal but continued 
lung development [47].

Between E9.0-E10.5 in mice, the mesenchyme which 
surrounds the AFE exhibits a gradient of β-catenin acti-
vated by Wnt2/2b ligands concentrated at the ventral side 
of the foregut [40, 45, 48–50]. A Wnt2/2b double knock-
out model in mouse embryos was found to be devoid of 
any Nkx2.1 expression or lung organogenesis, echoing 
the importance of the contributions made by β-catenin 
signaling during lung specification in the foregut endo-
derm [45, 51]. Additionally, at E9.0 in mice, BMP sign-
aling from the mesenchyme surrounding the ventral 

foregut suppresses Sox2 (indicative of esophageal fate) 
in the ventral endoderm, further allowing for the speci-
fication of respiratory fate via Nkx2.1 expression. (52) In 
essence, the gradient established by Wnt2/2b and Bmp4 
defines the dorsal Sox2high esophageal region and the 
ventral Nkx2.1high lung territory (Fig. 1c) [41, 45, 52–54].

At E10.5 in mice, the Nkx2.1 positive progenitor cells 
evaginate to initiate lung budding at the ventral wall of 
the AFE. This is facilitated by Fgf10 signaling from the 
surrounding mesenchyme [55]. Besides Fgf10, RA sign-
aling also plays a crucial role in lung bud formation as 
it promotes Wnt2/2b signaling by suppressing the Wnt 
inhibitor Dickkopf-related protein 1 (Dkk1); this is vital 
for conserving Nkx2.1 identity among the progenitors 
[56]. Additionally, RA signaling suppresses TGF-β signal-
ing in the surrounding mesenchyme, which is critical for 
Fgf10 mediated lung budding [57].

Accordingly, ventralization of AFE cells to generate 
NKX2.1-positive lung progenitors is the next logical step 
in directed lung epithelial differentiation from hPSCs. 
Most ventralization cocktails utilize some combinations 
of developmentally inspired signaling molecules such as 
BMP4, FGF10, Keratinocyte Growth Factor (KGF), RA, 
and WNT activation via CHIR99021 (a GSK3β inhibi-
tor) [58]. A recent study found that FGF signaling was 
dispensable for NKX2.1 specification during the ven-
tralization stage, and established three essential factors 
for NKX2.1 induction, CHIR99021 (Wnt agonist via 
GSK3β inhibition), BMP4 and RA [59]. Further, during 
the codifferentiation of cardiac and pulmonary lineages, 
effective NKX2.1-positive lung progenitor induction can 
be obtained by adding only CHIR99021 and RA during 
ventralization [60].

Proximal–Distal patterning and branching morphogenesis
During the pseudoglandular stage of lung organogenesis 
(E12.5-E16.5 in mice), the lung buds that sprout from the 
ventral foregut endoderm elongate and branch into the 
surrounding mesenchyme via a process called branch-
ing morphogenesis. Specifically, the distal epithelial tips 
undergo a period of repetitive bifurcations that results in 
the highly arborized tissue network that is characteristic 
of the lung [43, 61]. As hinted earlier, Fgf10 plays a criti-
cal, however, distinct role in branching morphogenesis of 
mouse and human lungs. In mice, Fgf10 from the distal 
lung mesenchyme surrounding the branching epithelial 
tips acts on Fgfr2-expressing epithelial cells to promote 
the expression of Bmp4 and Shh (Fig. 2a), which in turn 
inhibits Fgf10 expression. This lateral inhibition mecha-
nism drives the outgrowth of new epithelial branches 
[62, 63]. In contrast, the role of FGF10 in human branch-
ing morphogenesis remains unclear. In human fetal lung 
explant culture, FGF10 treatment decreased the number 
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of SOX2/SOX9 double positive cells and failed to induce 
branching [64, 65]. Another study found that the removal 
of FGF10 from in vitro bud tip progenitor culture did not 
affect the expression of human distal tip markers such as 
SOX2 and SOX9 [14].

At the same time (in mice), the Nkx2.1-positive pro-
genitors lining the epithelium start to exhibit distinct fate 
along the proximal–distal axis, resulting in Sox2-positive 
proximal lung progenitors and Sox9/Id2-positive distal 
lung progenitors. Interestingly, Sox2 expression makes 
multiple comebacks over the course of fetal lung develop-
ment: first as a pluripotency marker during gastrulation, 
then during anteriorization of the foregut endoderm, and 
finally during branching morphogenesis at the primary 
bronchial stalk in basal cells alongside P63. In fact, this 
final-stage Sox2 expression is maintained throughout 
the conducting airway morphogenesis until adulthood, 
suggesting the importance of Sox2 in driving epithelial 
differentiation in the airway, including into secretory 
cells, ciliated cells, and secretory cells [54, 66–68]. In the 
meantime, Sox9/Id2-positive cells specified in the distal 

lung eventually differentiate into AEC1 and AEC2 at the 
branching tips (Fig. 1d) [20, 69]. This marks yet another 
difference between mouse and human lungs, as during 
the pseudoglandular stage, human distal lung tips are 
double positive for both SOX2 and SOX9. However, this 
SOX2/SOX9 double positive feature is later lost during 
the canalicular stage of human lung development as these 
progenitor cells further differentiate [12].

The canalicular stage (E16.5-E17.5 in mice) marks 
the emergence of the pulmonary parenchyma and the 
air-blood barrier. During this stage, the terminal lung 
buds flatten and a thin air-blood barrier appears where 
the capillaries directly contact the flattened epithelium 
comprising AEC1 and AEC2 pneumocytes [43]. Eventu-
ally, during the saccular stage (E17.5-P0 in mice), these 
terminal buds develop into small sacs acting as alveolar 
precursors. At the same time, AEC2 starts to produce 
respiratory surfactants. While surfactants are initially 
stored in the intracellular lamellar bodies of AEC2, it is 
later secreted into the alveoli to reduce surface tension at 
the air–liquid interface.

Fig. 2  Recapitulating the lung cell-ECM interaction in vitro. a Cell-ECM interaction during in vivo branching morphogenesis. Fgf10 in the 
mesenchyme surrounding the branching tips specifies the Sox9/ID2 positive cell fate. b Schematics showing how engineered ECM can modulate 
cellular interactions with key morphogenic growth factors (such as FGF10) in human lung stem cell engineering. Traditional FGF10 is delivered 
in its free soluble form. Using functionalized ECM with enhanced affinity to FGF10, such as that modified with heparin, more durable bioactivity 
and biomimetic ECM association can be introduced. Further, spatial specific delivery or activation of growth factors, using approaches such as 
photo-activatable biomaterials, can offer further control over directed tissue formation, mimicking the mechanism underlying native branching 
morphogenesis. P/D, proximal/distal
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Finally, just prior to birth, the developing lung enters 
the alveolar stage, lasting well into early childhood in both 
mice and human. Here, the small alveolar sacs formed 
during the canalicular, and saccular stages undergo fur-
ther division via secondary septation to increase the sur-
face area available for gas exchange [70]. Additionally, the 
capillary units associated with the alveoli become tightly 
apposed to AEC1 for enhanced gas-exchange efficiency 
[71]. Alveologenesis and vasculogenesis continues until 
the lungs enter quiescent homeostasis.

A few protocols have already established the deriva-
tion of both proximal and distal lung cells together from 
hPSC-derived NKX2.1 positive progenitors. Known 
recipes include a combination of CHIR99021, FGF10 
and KGF, and a combination of CHIR99021, FGF10, 
KGF, BMP4 and RA [27, 30]. These protocols often yield 
a combination of multiple cell types, rendering them 
extremely useful as models for development. Below is a 
discussion of existing protocols for the directed differen-
tiation of hPSC-derived NKX2.1 positive progenitors to 
specific pulmonary epithelial lineages.

•	 Basal cells: A recent study implicated Wnt signal-
ing as the driver of the bifurcation between proxi-
mal (low Wnt) versus distal (high Wnt) fate among 
Nkx2.1-positive lung progenitors [72]. FGF10 signal-
ing has been shown to maintain epithelial progeni-
tors in an undifferentiated state [73]. It is also highly 
expressed throughout the parenchyma in the human 
airway and resident vascular smooth muscle cells [64, 
65]. Accordingly, a medium without exogenous Wnt, 
and with FGF10 and FGF2 was developed for deriv-
ing airway basal cells from hPSCs [32]. 3D Matrigel 
culture was then initiated in a medium compris-
ing FGF2 and FGF10, together with Dexmethasone, 
Cyclic adenosine monophosphate (cAMP) and 
3-Isobutyl-1-methylxanthine (DCI). The resulting 
cells were marked by the co-expression of the typical 
basal cell markers such as NKX2.1, P63, and SOX2, 
and are capable of long-term self-renewal and dif-
ferentiation into ciliated and secretory cells in a way 
similar to what primary basal cells do.

•	 AEC2: AEC2s serve several functions in the lung, 
including secreting surfactants to maintain the 
patency of the alveoli, and further differentiating 
into AEC1s [74]. The differentiation of hPSC-derived 
AEC2s capable of long-term in vitro self-renewal was 
recently reported [31]. NKX2.1-positive lung progen-
itors, enriched by fluorescence activated cell sorting 
(FACS), were transferred to 3D Matrigel-embedded 
culture in the presence of CHIR99021 (WNT ago-
nist), to promote distal lung specification. KGF was 
also supplemented to the medium, due to its role 

in inducing AEC2 differentiation and proliferation 
in  vivo [75]. Additionally, cAMP and 3-Isobutyl-
1-methylxanthine (cAMP signaling agonist) were 
also added to promote alveolar maturation [76]. Fol-
lowing two weeks of treatment with the CK-DCI 
(CHIR99021, KGF and DCI) medium, CHIR99021 
(Wnt) exposure was withdrawn for one week, fol-
lowed by CHIR99021 addback. The resulting protocol 
was able to successfully enable the formation of alve-
olospheres comprising SFTPC-positive AEC2s. The 
withdrawal and subsequent addback of CHIR99021 
is consistent with the Wnt signaling wave observed 
during murine lung development and is required for 
AEC2 maturation and long-term self-renewal [77]. 
The induced AEC2s also possessed functional lamel-
lar bodies and were capable of surfactant secretion, 
a key function of AEC2 in lung physiology. However, 
the SFTPC-positive hPSC-derived AEC2s generally 
possessed an immature phenotype in comparison 
with their in vivo counterpart, and additional molec-
ular signatures, such as ABCA3, are likely required to 
define mature AEC2s [78, 79].

•	 AEC1: AEC1s facilitate the primary function of the 
lung – gas exchange. Historical evidence suggests 
that AEC2s isolated from rats that are seeded on tis-
sue culture-treated plastic readily transdifferentiate 
into AEC1-like cells, expressing similar morphology 
and markers as native AEC1s [80]. More recently, a 
serum-free, feeder-free protocol was developed to 
differentiate primary human AEC2 to AEC1 in vitro 
[81]. This media combined SB431542 (TGF-β inhibi-
tor), CHIR99021 (Wnt agonist), BIRB796 (that inhib-
its mitogen-activated protein kinase or MAPK), 
FGF10, and Epidermal Growth Factor (EGF) in the 
presence of human serum. The resulting cells were 
marked by an increase in AGER (AEC1 marker) and 
a decrease in SFTPC expression. These cells also 
possessed a flat, thin morphology characteristic of 
AEC1. Additionally, hPSC-derived AEC2s cultured in 
2D conditions possessed flat AEC1-like morphology, 
along with the upregulation of AEC1 markers such 
as AGER, CAV1 and PDPN [31]. Similar AEC1-like 
cells were also observed in an hPSC-derived lung bud 
organoid model [82]. More recently, hPSC-derived 
AEC2s co-cultured with fetal lung fibroblasts dif-
ferentiated into alveolar organoids comprising both 
AEC1s and AEC2s [33]. They also demonstrated 
that the AEC2s further differentiate into AEC1s in 
the presence of XAV-939 (Wnt inhibition), possess-
ing AEC1-like flat and thin cell morphology, in addi-
tion to expressing a combination of AEC1 markers, 
including AGER, HT1-56, PDPN, and HOPX. Sin-
gle cell RNA sequencing also revealed considerable 
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similarities to primary AEC1s. Despite progresses 
discussed here, the mechanisms driving hPSC differ-
entiation into AEC1s remain not completely under-
stood and functional assays for fully characterizing 
the induced AEC1s remains limited, which presents 
opportunities for future investigation.

Pulmonary organoids: organized cell–cell 
interactions
The human lung is home to over 40 individual cell types 
that coordinate to maintain respiratory function [83, 84]. 
Accordingly, communication between these participat-
ing cells is often at the heart of major events such as lung 
organogenesis and pathogenesis. However, this com-
munication maybe lost in translation going from three-
dimensional (3D) organs to two-dimensional (2D) cell 
culture models, citing the need for 3D tissue platforms 
that can recreate the native-like tissue microenvironment 
in vitro. Lung organoids are 3D micrometer-to-millime-
ter-scale tissues generated from primary or hPSC-derived 
epithelial progenitors that self-assemble and further dif-
ferentiate to recapitulate some aspect(s) of respiratory 
tissue architecture and physiology in an in vitro setting. 
They can be broadly classified as: proximal lung orga-
noids that feature cells mimicking the conducting air-
way, distal lung organoids that recapitulate the alveoli, or 
proximal–distal organoids.

Proximal lung organoids
While the conducting airway generally exhibits slow cel-
lular turnover, it has its own population of adult stem 
cells, the basal cells, which can renew and replenish the 
airway epithelium in the event of an injury [85]. Air-
way epithelial cells are relatively easy to acquire from 
patients given that they can be isolated from nasal swab 
cultures [86]. As discussed earlier, basal cells can also be 
generated from hPSCs [72, 87, 88]. Such easy access has 
opened up the possibility of generating airway disease 
models that leverage the knowledge of in vivo differentia-
tion cues to drive basal cell specification toward a muco-
ciliary fate in vitro.

The in vitro self-organization of airway epithelial cells 
in collagen into 3D tubular structures comprising basal, 
secretory, and ciliated cells was first reported almost 
30  years ago [89]. Almost two decades later, the first 
account of basal cell self-organization and differentia-
tion into airway organoids was reported. Using air–liquid 
interface (ALI) culture and Matrigel embedding, this 
study demonstrated that basal cells derived from both 
murine and human sources can proliferate and form indi-
vidual spherical structures that they termed “tracheo-
spheres”. The tracheospheres possessed a P63-positive 

basal cell layer on the basal lateral side, and an inner api-
cal lumen lined with Alpha-Acetylated-Tubulin-positive 
ciliated cells [6].

Airway organoids generated from both patient-derived 
basal cells and hPSCs can serve as powerful models for 
the study of disease mechanisms and possible drug 
therapies for airway respiratory illnesses. A prominent 
example of this is airway organoids that model cystic 
fibrosis (CF), a disease caused by mutations of a sin-
gle gene—the cystic fibrosis transmembrane conduct-
ance regulator (CFTR) gene [72, 90]. So far, over 2000 
disease-causing mutations of the CFTR gene have been 
identified. Accordingly, generating patient-specific orga-
noids to screen for mutation-specific therapies that can 
restore CFTR function has been an important research 
milestone in this field [91, 92]. Further, airway organoids 
can also be used to model the defective cilia motility 
associated with primary ciliary dyskinesia (PCD) [32, 93, 
94]. Airway organoids have also been used to model the 
plasticity of the airway epithelium in response to anti- 
and pro-inflammatory cytokines. For instance, the use 
of interleukin (IL)-13 and IL-6 has been shown to drive 
basal cell differentiation toward a secretory fate, and cili-
ated fate, respectively [95, 96]. Currently, there are no air-
way organoid models that can recapitulate mucociliary 
clearance, one of the primary functions of the conducting 
airway, suggesting that there remains much to be investi-
gated in this field.

Distal lung organoids
AEC2s have long been considered the resident adult stem 
cell population of the alveolus, possessing an established 
ability for self-renewal [18, 97]. While their capacity for 
differentiation to AEC1s are thought to be set in motion 
by injury, the mechanisms behind this are not well under-
stood [31, 33, 82]. AEC2s isolated from mice were first 
accounted to generate alveolar organoids in 2013; FACS-
enriched AEC2s cultured in an ALI/Matrigel system 
along with primary Pdgfrα-positive lung fibroblasts were 
shown to form 3D spherical structures termed “alveo-
lospheres” comprising Sftpc-positive AEC2s and cells 
positive for AEC1 markers such as Aqp5 and Hopx [97]. 
However, unlike basal cells in the conducting airway, the 
epithelial population of the alveoli are far less accessible. 
Alternatively, as reported earlier, alveolar organoids can 
also be derived from hPSCs [14, 31, 98].

Alveolar organoids generated from both primary 
sources and hPSCs have demonstrated great potential to 
recapitulate disease pathology and address the shortage 
of physiologically relevant in vitro systems for therapeu-
tic testing. An important example of this was the recent 
use of lung organoids as a model for severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) infection 
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[99–101]. One such study demonstrated that the AEC2-
like cells in the hPSC-derived lung organoids expressed 
the angiotensin-converting enzyme 2 (ACE2) recep-
tor and are susceptible to SARS-CoV-2 infection, much 
like their native counterpart [99]. This model, to a cer-
tain extent, was able to recapitulate the inflammatory 
response that occurs in human lungs during SARS-CoV-2 
infection. Additionally, they were also able to screen for 
several FDA-approved drugs that target the inhibition of 
SARS-CoV-2 entry. Further, hPSC-derived alveolar orga-
noids have also been used to demonstrate the potential 
of gene editing tools such as CRISPR, which was recently 
used to correct a SFTPB mutation [31]. Despite the great 
advances in engineering lung organoids, vascularizing an 
hPSC-derived distal lung organoid to accurately recapitu-
late gas exchange in the alveoli remains an elusive goal 
in this field. However, a recent study tri-cultured normal 
lung fibroblasts, AEC2-like A549 cells, and endothelial 
cells to generate a first of its kind vascularized alveolar 
model, inching us a step closer [102].

Mesenchymal participation in lung organoids
The pulmonary mesenchyme comprises myofibroblasts, 
smooth muscle cells, endothelial cells, and macrophages. 
[103, 104]. A seminal protocol recently described the 
derivation of both, mesenchymal and epithelial com-
partments in an hPSC-derived lung organoid [82]. These 
hPSC-derived “lung bud organoids” notably possessed 
heavily branched structures lined with both proximal 
and distal cell types, exhibiting tissue morphology and 
gene expression consistent with the developing human 
lung. More recently, a highly branched bronchioalveo-
lar organoid (BALO) was established by 3D culturing 
FACS-enriched murine bronchioalveolar stem cells 
with resident fibroblasts and macrophages [10]. Single-
cell sequencing confirmed that the cellular makeup of 
BALO was comparable to that of the native bronchio-
alveolar compartment in mouse lung. There are a few 
other co-culture systems that highlight the benefits 
of mesenchyme involvement. For example, an hPSC-
derived cardio-pulmonary co-differentiated organoid 
system strikingly found expedited alveolar maturation in 
the company of cardiac mesoderm [34]. Further, hPSC-
derived lung cells cultured with M1 and M2 macrophages 
to model inflammatory responses during SARS-COV-2 
infection lead to the discovery of an interesting potential 
therapeutic strategy for COVID-19 involving M2 mac-
rophages [105]. Research on other organ systems have 
also drawn on the idea of leveraging mesenchymal cells to 
generate more functional organoids. For instance, it was 
reported that the incorporation of human mesenchymal 
stem cells (hMSCs) can drive vascularization in hPSC-
derived liver tissues [106]. The benefits of hMSC-driven 

self-condensation was later demonstrated in other organ 
models as well, including intestine, heart, kidney, brain, 
and especially the lung [107].

The pulmonary mesenchyme has been reported as the 
source of a complex signaling cascade regulating several 
key developmental events, including respiratory lineage 
specification, branching morphogenesis, and epithelial 
differentiation [103, 104]. The contributions from the 
pulmonary mesenchyme are so important, that strate-
gies utilizing mesenchyme-derived growth factors, small 
molecule regulators of these growth factor signaling, or 
direct cellular co-culture have been developed to mimic 
this interaction during in  vitro stem cell differentiation. 
Additionally, research on many pulmonary diseases 
such as asthma, which specifically target the mesenchy-
mal compartment of the conducting airway, the airway 
smooth muscle, would benefit greatly from an in  vitro 
multi-lineage organoid model [108]. While participation 
from non-epithelial pulmonary cell types is noticeably 
rare in most current lung organoid systems, this leaves 
much to look forward to in this field.

Engineering cell–matrix interactions to optimize 
the in vitro stem cell niche
In the era of multi-omics, our understanding of the lung 
extracellular matrix (ECM) and its composition is con-
tinuously evolving. The lung ECM broadly comprises 
a network of collagen and elastin fibers enriched with 
proteoglycans (PGs), glycosaminoglycans (GAGs), and 
fibronectin [109].

It is immediately obvious that the ECM provides an 
elaborate framework that maintains structural integ-
rity during lung organogenesis. However, it also plays a 
critical role in defining stem cell fate and maturation of 
the lung [20, 110]. The pulmonary ECM is a nexus of 
biochemical and mechanical cues that instructs stem 
cell behavior during lung development and regeneration 
[111]. For instance, proteoglycans found in the basement 
membrane ECM mediates FGF10 signaling that directs 
branching point specification during branching morpho-
genesis of rodent lungs [112, 113]. Similarly, the deposi-
tion of the structural protein elastin, especially in areas 
of the alveolus that are points for future alveolar crests is 
a driving force for secondary septation that occurs dur-
ing alveolarization of the developing lung [114]. Laminin 
alpha5, an important component of the alveolar base-
ment membrane also plays a critical role in directing alve-
olar epithelial cell maturation in the developing murine 
lung [115]. Inspired by native ECM, several attempts have 
been made to engineer matrices for in  vitro stem cell 
maintenance and directed differentiation into pulmonary 
lineage. For instance, conditioned medium secreted by 
804G cells is a popular source of laminin and collagen for 
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in  vitro expansion of airway basal stem cells [116, 117]. 
Additionally, Matrigel, a commercially available product 
comprising laminin, collagen IV and heparan sulfate pro-
teoglycans isolated from Engelbreth-Holm-Swarm (EHS) 
sarcoma is commonly used either as a coating in 2D cul-
ture or as a hydrogel scaffold in 3D culture to direct stem 
cell differentiation into alveolar and airway epithelial lin-
eages [31, 60, 118]. Alternatively, a 3D matrix of collagen 
I can also be applied to facilitate stem cell differentiation 
into multiple pulmonary epithelial lineages [29].

The composition of ECM also dictates its stiffness; pro-
teins such as collagen and fibronectin influence  tensile 
strength while elastin  accounts for elastic recoil [119]. 
ECM stiffness has been shown to regulate stem cell dif-
ferentiation through mechanosensing [120]. This is 
observed during murine lung development as the base-
ment membrane is thinner at the epithelial buds than the 
surrounding ECM, generating a stiffness gradient that 
ultimately directs branching morphogenesis [121, 122]. 
While the lung stem cell field is due for more comprehen-
sive studies exploring the effects of substate stiffness and 
matrix composition on in vitro hPSC differentiation into 
the pulmonary lineage, one recent study that investigated 
in vitro lung progenitor specification on two-dimensional 
(2D) Gelatin and Matrigel vs 3D Matrigel hinted at a 
preference for the less-stiff 3D Matrigel substrate [46]. 
There has also been a special focus on engineering lung 
ECM-specific hydrogels to recapitulate the stiffness and 
composition of the native lung [123, 124].

Advances in biomaterial engineering and fabrication 
also presents the potential for further improvement in 
recapitulating cell–matrix interactions and organotypic 
tissue architectures of the lung. Whole-organ decellu-
larization provides a platform for lung cell engraftment 
in lung-specific ECM and spatial specific cell seeding 
into the alveolar and vascular compartments [125–128]. 
Technology developments in additive manufacturing 
have also facilitated the fabrication of ECM scaffolds 
that more closely recapitulate native lung architecture. 
Specifically, solubilized bioinks prepared from puri-
fied or decellularized ECM materials can potentially be 
3D printed alongside desired cell populations to gen-
erate scaffolds or cellular tissue grafts of desired geom-
etries [129–131]. Moreover, signaling molecules, such as 
growth factors and glycosaminoglycans (GAGs), can be 
incorporated to further functionalize ECM biomaterials 
via enzymatic or chemoselective approaches to generate 
a signaling reservoir to modulate cellular differentiation 
and tissue morphogenesis [129, 132]. One of the great-
est challenges lies in achieving temporal and spatial spe-
cific delivery of signaling molecules with high resolution, 
like during branching morphogenesis of the native lung, 
when the ECM establishes a unique pattern for Fgf10 

signaling gradient via differential Fgf10 expression of 
mesenchymal cells, promoting branching morphogenesis 
(Fig. 2). While some initial attempts have shown the pos-
sibility to achieve spatial-specific biomaterial function-
alization (Fig. 2b) [133], their eventual implementation in 
engineering complex tissues such as the lung will require 
extensive future advancements from both scientific and 
engineering investigations.

A deeper understanding of ECM dynamics accom-
panying lung cell induction and tissue formation offers 
the promise to further boost our ability to modulate 
cell-ECM interactions for directed lung tissue morpho-
genesis. The ECM microarray technique enables high-
throughput screening of multiple combinations of ECM 
components by generating thousands of different arti-
ficial niches for testing stem cell responses [134]. With 
the rapid development of mass spectrometry, the prot-
eomic analysis of stem cell niche starts to contribute to 
the identification of novel proteins from the matrisome 
(ECM and ECM-associated proteome) that promote 
stem cell differentiation. With higher resolution and sen-
sitivity in characterizing matrisome dynamics, key ECM 
factors may be discovered for optimizing the extracellular 
stem cell niche in vitro.

Concluding remarks
Lung development is a complex but highly coordinated 
process regulated by a considerable number of signals 
and pathways. These signals are produced and secreted 
by cells in the epithelium and mesenchyme, serving as 
cues to modulate lineage-specific gene expression, guide 
cell migration, and specify cell fates.

As discussed earlier, many seminal attempts have been 
made to direct hPSCs differentiation in  vitro by reca-
pitulating key programs of native lung development [27, 
31–33, 72]. Many of these protocols are based on induc-
ing the signals found in  vivo in a temporally specific, 
stepwise manner. While these innovative efforts cannot 
be understated, there is still more to be investigated. For 
instance, very little is understood about directing in vitro 
hPSC differentiation into AEC1, a cell type that facilitates 
the most prominent function of the lungs, gas exchange. 
Generally, features such as gene expression, morphology, 
and functionality are assessed in combination to iden-
tify cells in  vitro. The lack of an established functional-
ity assay also potentially hinders the optimization of 
hPSC differentiation into AEC1. Additionally, the goal 
of interfacing tissue engineered lung epithelium with a 
perfusable vascular component remains an area of active 
exploration.

In vivo lung stem cells behaviors are highly regulated 
by their microenvironments, comprising cell–cell inter-
actions and cell-ECM interactions. Several multi-lineage 
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co-cultures and ECM systems have been established to 
improve the biomimicry of in vitro stem cell models. How-
ever, there remains a critical need to expand our under-
standing of these interactions during both native and 
engineered lung morphogenesis to improve our ability to 
engineer lung stem cell niches. For instance, character-
izing cell type-specific secretome in multi-lineage culture 
systems can reveal how cells interact with one another. 
Additionally, studying ECM dynamics during native lung 
organogenesis can lead to the discovery of novel extracel-
lular factors that can promote stem cell differentiation or 
their integration into higher order tissue structures.
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