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Abstract 

Background: Diabetic retinopathy, a major complication of diabetes mellitus, is a leading cause of sigh-loss in work-
ing age adults. Progressive loss of integrity of the retinal neurovascular unit is a central element in the disease patho-
genesis. Retinal ischemia and inflammatory processes drive interrelated pathologies such as blood retinal barrier 
disruption, fluid accumulation, gliosis, neuronal loss and/or aberrant neovascularisation. Current treatment options 
are somewhat limited to late-stages of the disease where there is already significant damage to the retinal architec-
ture arising from degenerative, edematous and proliferative pathology. New preventive and interventional treatments 
to target early vasodegenerative and neurodegenerative stages of the disease are needed to ensure avoidance of 
sight-loss.

Main body: Historically, diabetic retinopathy has been considered a primarily microvascular disease of the retina and 
clinically it is classified based on the presence and severity of vascular lesions. It is now known that neurodegenera-
tion plays a significant role during the pathogenesis. Loss of neurons has been documented at early stages in pre-
clinical models as well as in individuals with diabetes and, in some, even prior to the onset of clinically overt diabetic 
retinopathy. Recent studies suggest that some patients have a primarily neurodegenerative phenotype. Retinal 
pigment epithelial cells and the choroid are also affected during the disease pathogenesis and these tissues may also 
need to be addressed by new regenerative treatments.

Most stem cell research for diabetic retinopathy to date has focused on addressing vasculopathy. Pre-clinical and 
clinical studies aiming to restore damaged vasculature using vasoactive progenitors including mesenchymal stromal/
stem cells, adipose stem cells,  CD34+ cells, endothelial colony forming cells and induced pluripotent stem cell derived 
endothelial cells are discussed in this review. Stem cells that could replace dying neurons such as retinal progenitor 
cells, pluripotent stem cell derived photoreceptors and ganglion cells as well as Müller stem cells are also discussed. 
Finally, challenges of stem cell therapies relevant to diabetic retinopathy are considered.

Conclusion: Stem cell therapies hold great potential to replace dying cells during early and even late stages of 
diabetic retinopathy. However, due to the presence of different phenotypes, selecting the most suitable stem cell 
product for individual patients will be crucial for successful treatment.
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Background
Diabetic retinopathy (DR) is the most common micro-
vascular complication of diabetes mellitus (DM) and 
remains a leading cause of sight-loss in working age 
adults worldwide. [1, 2]. Among individuals with diabe-
tes, the global prevalence was estimated to be 22.27% for 
DR and 6.17% for vision threatening DR in 2020 [3]. Dia-
betes is a growing global disease, and the International 
Diabetes Federation estimated the global population with 
DM to be 537 million in 2021 with a predicted estimate 
of 643 million by 2030 and 783 million by 2045 [4]. Hence 
DR will become an even more challenging health prob-
lem in the coming years and new therapeutic approaches 
are needed at all stages of disease.

It is well-established that diabetes causes damage to the 
vasculature, neurons and glia of the retina although the 
current clinical classification is largely based on micro-
vascular lesions. There is now broad acceptance that 
retinal neurodegeneration also plays a significant role 
in DR [5]. This is manifest in robust neurodegenerative 
hallmarks such as reactive gliosis, diminished neuronal 
function, glutamate excitotoxicity, reduced levels of 
neurotrophic factors and neural accelerated apoptosis 
mainly affecting retinal ganglion cells and amacrine cells, 
although photoreceptors can also be affected [6–8]. In 
fact, all major cell types of the retina have been shown 
to be altered and DR may result from interplay between 
endothelial cells, neurons, microglia, astrocytes and Mül-
ler cells [9]. Furthermore, the vasculature of the choroid 
which supplies the outer retina, photoreceptors, and 
retinal pigment epithelium (RPE) undergoes changes 
during the course of DR which are likely to contrib-
ute to the pathology [10]. In addition, there is evidence 
that peripheral immune cells including neutrophils and 
monocytes are activated in DR leading to increased leu-
kocyte-endothelial interaction which can cause capillary 
occlusion and release of pro-inflammatory cytokines, 
contributing to the increased vascular permeability [11, 
12]. Dysfunction of the neurovascular unit is a key fea-
ture of DR but its impact on retinal function remains 
largely asymptomatic for patients in the early stages of 
their disease. As the disease develops, capillaries become 
progressively non-perfused resulting in retinal ischemia 
and hypoxia which in turn drives upregulation of pro-
angiogenic factors such as vascular endothelial growth 
factor (VEGF) and activation of inflammatory pathways. 
Retinal ischemia and elevated levels of VEGF eventually 
lead in some patients to blood retinal barrier disruption, 
excessive vasopermeability, fluid accumulation and neo-
vascularisation and ultimately to the advanced, sight-
threatening stages of diabetic macular edema (DME) and 
proliferative DR (PDR) [2, 6, 9]. A better understanding 
of the underlying disease mechanisms and the interplay 

between intrinsic vascular cells, circulating cells and neu-
ronal factors in retina and choroid might lead to better 
and more precise therapeutic approaches.

Most current treatment options such laser photo-
coagulation, corticosteroids, vitreoretinal surgery and 
anti-VEGF injections are targeted at end-stages of the 
disease after significant damage has already occurred 
[13]. Recent studies also suggest that early initiation of 
anti-VEGF injections, before complications of DR have 
occurred, can reduce the progression to severe stages 
[14, 15]. Anti-VEGF therapy has revolutionised the man-
agement of DR and many patients now benefit from 
this treatment [2]. However, not all patients respond to 
anti-VEGF therapy and complications can occur in some 
patients as a result of it [2, 16, 17]. The treatment requires 
being repeated regularly and long term, is inconvenient 
to patients, stretches the capacity of all health care sys-
tems and is expensive. [17]. At present there are very 
limited therapeutic options available to prevent progres-
sion from the early stages of DR to sight-threatening DR. 
Fenofibrate seems to be promising for this purpose [18] 
and it is licenced in some countries to prevent progres-
sion of DR. However, further evidence is needed [19]. 
Other options to reduce the risk of developing DR or 
arresting its progression include tight control of glyce-
mia, dyslipidemia and hypertension [2]. Neuroprotec-
tive therapies also hold potential for the management of 
DR and several pre-clinical studies in diabetic mouse and 
rat models have shown beneficial effects such as reduced 
neuronal cell death and glutamate excitotoxicity when 
administering neuroprotective agents including insulin-
like growth factor 1 (IGF-1), pigment epithelium-derived 
factor (PEDF), somatostatin, pituitary adenylate-cyclase-
activating polypeptide (PACAP), glucagon-like pep-
tide-1 (GLP-1) and neurotrophins such as brain-derived 
neurotrophic factor (BDNF) and nerve growth factor 
(NGF) [20]. Although a clinical trial using two potential 
neuroprotective strategies, brimonidine and somatosta-
tin, did not detect differences between groups and when 
compared with placebo, these drugs appeared to prevent 
progression of retinal functional changes in people with 
pre-existing neurodysfunction [21].

There is a need for efficacious new therapies at both 
early and late stages of DR. Once cell loss has occurred 
in DR, stem cell therapies may be able to restore them, 
and if risks associated with their use were to be low, these 
could be administered even in early stages of disease to 
people at higher risk of developing sight-threatening 
complications.

The potential of regenerative therapies for the treat-
ment of DR are currently explored by many investi-
gators [22, 23]. The hypothesis that retinal function 
can be restored through repairing retinal blood flow 
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is supported by case reports of spontaneous reperfu-
sion of an ischemic retina and recovery of visual acuity 
[24]. Spontaneous reperfusion has also been reported 
in the ischemic diabetic retina [25, 26]. Muraoka et  al. 
reported a relatively high incidence of revascularisation 
of nonperfused areas (in 40 of 60 eyes with DR) through 
repeated fluorescein angiography [27]. Vessel resident 
endothelial progenitor cells are important for maintain-
ing vascular homeostasis and promoting vascular repair 
in pathological situations. Upon vascular injury, progeni-
tors can become activated and contribute to endothe-
lial regeneration and promote restoration of perfusion 
[28–30]. Lineage tracing experiments in mice revealed 
that vessel-resident endothelial progenitors participate in 
neovessel formation during wound healing [31]. Chronic 
wounds due to impaired wound healing are well docu-
mented in diabetes mellitus [32] indicating deficiencies 
in normal repair processes suggesting that endogenous 
vascular repair mechanisms might also be compromised. 
Enhancing or restoring endogenous repair mechanisms 
might present a novel therapeutic angle [33]. In contrast, 
replacing dying cells with stem cell therapy holds poten-
tial for restorative therapeutic approaches in DR [22, 
23]. Several different stem cells have been tested in pre-
clinical models of DR including embryonic or induced 
pluripotent stem cells (iPSC), hematopoietic stem cells, 
endothelial progenitor cells (EPCs), and mesenchymal 
stromal cells (MSC) [22]. However, due to the complex 
nature of DR, selection of the most promising stem cell 

product remains a challenge. Furthermore, determin-
ing the patients most at risk of sight-loss and those that 
would benefit most from restorative therapy is still dif-
ficult. Finally, more research is needed to determine 
the exact time point to initiate treatment to obtain best 
outcomes.

Clinical classification of diabetic retinopathy
Clinically, DR is classified based on anatomical features 
and the presence and severity of vascular lesions as 
detectable on fundus photographs (see Fig. 1).

The first level of DR is “no retinopathy” (referring to 
no “overt” retinopathy as seen in retinal fundus images).
The second level “mild NPDR”, which is characterised by 
microaneurysms only. The risk of significant progression 
over several years is very low in both groups. The third 
level, “moderate NPDR,” is characterised by more than 
just microaneurysms, e.g. presence of intraretinal hem-
orrhages and/or hard exudates, and/or venous beading 
but less than severe NPDR;the risk of progression in this 
group increases significantly. The fourth level, “severe 
NPDR” is characterised by any of the following: more 
than 20 intraretinal hemorrhages in each of four quad-
rants; venous beading in at least two quadrants andin-
traretinal microvascular abnormalities (IRMA) in at least 
one quadrant with no signs of proliferative retinopathy 
(PDR). The hallmark of the fifth level, “PDR”, is the pres-
ence of new vessels in the optic disc or elsewhere in the 
retina.

Fig. 1 Ultra-widefield fundus images showing five stages of Diabetic Retinopathy (DR) according to the international classification of DR
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Diabetic macular edema (DME) can occur at any 
stage of DR DME can beclassified as “mild”, “moderate” 
or “severe depending on the distance from the centre of 
the fovea of retinal thickening and/or hard exudates [34]. 
DME is evaluated clinically on slit-lamp biomicroscopy 
and optical coherence tomography (OCT).

Retinal changes prior to the clinical onset 
of diabetic retinopathy
There is an early stage in DR when there are functional 
and structural changes in the retina that are not detected 
on routine fundus examination or fundus photography. 
Fundus fluorescein angiography (FFA) performed in 
eyes of individuals with diabetes but without clinically 
visible (i.e. “overt”) retinopathy may reveal early retinal 
vascular changes present in more than half of the eyes 
studied including dye leakage, dilatation of capillaries 
and changes in retinal blood flow [35, 36]. When using 
ultra-wide field imaging with and Optos imaging sys-
tem (Dunfermline, Scotland, UK) only 1.5 millilitres of 
fluorescein dye are needed to obtain high quality fluo-
rescein angiograms depicting the entire retinal vascular 
tree. These findings have been noted also using optical 
coherence tomography angiography (OCT-A) [37, 38]. 
OCT-A is a non-invasive imaging technique able to cap-
ture the microvasculature of the retina without the need 
of an injectable dye.With OCT-A it is possible to visual-
ise superficial and deep retinal vascular plexuses which 
was previously only achievable on histological examina-
tions [39]. OCT-A allows a better understanding of how 
capillaries change over the course of DM and has been 
used successfully in several studies to detect early micro-
vascular changes in individuals with diabetes but without 
overt retinopathy [37, 38]. With the availability of ultra-
widefield imaging, peripheral retinal pathology, missed 
by traditional angiography, can be detected [40]. Studies 
have also shown that the presence and extent of periph-
eral lesions in individuals with DR are associated with an 
increased risk of DR progression and severity [41].

Spectral-domain optical coherence tomography (SD-
OCT) provides anatomical and structural information 
and has been used to investigate neurodegenerative 
changes such as ganglion cell complex (GCC) thickness, 
a measure of ganglion cell loss. While some studies iden-
tified reduced GCC thickness in individuals with diabe-
tes prior to the onset of overt DR compared to healthy 
controls [42, 43], other studies could not find any signifi-
cant differences [44, 45]. Disorganisation of retinal inner 
layers (DRIL) detectable by SD-OCT has been shown to 
be a more reliable marker to predict visual acuity and DR 
severity [46, 47]. DRIL has been detected in some indi-
viduals with diabetes without overt DR [48].

In addition to structural changes of the neuroretina, 
functional changes prior to the onset of clinically overt 
DR have been reported as alterations in oscillatory 
potentials in the electroretinogram (ERG), a measure of 
outer retinal function [49, 50]. Neuronal dysfunction has 
further been demonstrated by studies using multifocal 
ERG (mfERG) in individuals with diabetes without overt 
DR as early as two years after diagnosis of DM [51, 52]. 
Even in individuals with prediabetes (glycated haemoglo-
bin (HbA1C) level between 5.7 and 6.4%) ERG responses 
were reduced compared to normal controls (HbA1C level 
below 5.7%) [53]. Functional assessments including visual 
acuity, contrast sensitivity and perimetry have also shown 
functional impairments in individuals with diabetes prior 
to the onset of clinically over DR when compared to indi-
viduals without DM [54].

The European Consortium for the Ealy Treatment of 
Diabetic Retinopathy (EUROCONDOR) study found that 
61% of patients with diabetes without visible microvas-
cular disease presented neurodegenerative abnormali-
ties detected by mfERG and SD-OCT. When assessing 
patients with visible but mild microvascular disease, 68% 
of patients showed neurodenerative changes while 32% 
did not present any functional or structural neurode-
generative abnormalities. These findings suggest that 
some patients might have a primarily neurodegenera-
tive phenotype while others a primarily microvascular 
phenotype [7]. However, FFA was not performed in this 
study and might have identified early vascular changes 
in at least a proportion of the 61% of patients labelled 
as having”no DR”. Similarly, ultra-widefield OCT and 
full field ERG might have identified retinal neurodegen-
eration in at least some of the 32% of patients reported 
with mild microvascular disease only. Further studies, 
thus, are needed to confirm the existence of two dis-
tinct phenotypes e.g. primarily microvascular vs primar-
ily neurodegenerative phenotype at the beginning of DR 
pathology. A better understanding of different disease 
phenotypes could have implications for therapy as some 
patients might benefit more from neuroprotective rather 
than vasoprotective agents at early stages of the disease. 
While most attention has been focused on stem cells 
addressing vasculopathy for the treatment of DR, restor-
ing other damaged cells including neurons, RPE and glia 
cells might have beneficial effects especially in patients 
that do not have a primarily microvascular phenotype 
(see Fig. 2).

Stem cells for retinal vasculopathy
The microvasculature of the retina is made up of 
endothelial cells and pericytes and provides the required 
nutrients to the neuronal tissue. Tight junctions between 
endothelial cells maintain the inner blood retinal barrier 
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(iBRB) which is tightly controlled by signaling of all com-
ponents of the retinal neurovascular unit including neu-
ral and glial cells along with pericytes and retina resident 
immune cells [2, 9]. Altered blood vessel permeability 
and breakdown of the iBRB due to abnormal pericyte-
endothelial interactions, loss of pericytes and activated 
circulating immune cells are among the first microvas-
cular abnormalities that occur because of diabetes. Peri-
cytes wrap around retinal capillaries to provide structural 
and functional support. Their importance in the reti-
nal microvasculature is highlighted by the high ratio of 
retinal pericytes to endothelial cells (1:1) [55]. Loss of 
pericytes promotes increased VEGF signaling and per-
meability and eventually leads to loss of endothelial cells 
[2, 6].

While embryonic stem cells can create every cell in the 
body (pluripotent) and are capable of unlimited self-repli-
cation, adult stem cells have significant albeit limited self-
renewal potential, are committed to generate cell types 

of a specific lineage (multipotent) and are responsible for 
tissue maintenance and repair of the tissue they reside 
in e.g. endothelium. Progenitor cells are descendants 
of stem cells that are committed to targeted differentia-
tion into specialized cell types and it has been suggested 
that endothelial progenitor cell niches exist within highly 
vascularized organs [56]. The identification of these rare 
progenitor cells in many adult tissues opened new ther-
apeutic avenues for degenerative diseases [57]. Stem/
progenitor cell therapy may be an attractive therapeutic 
option to replace lost endothelial cells and pericytes in 
DR to restore perfusion and vascular function.

Mesenchymal stromal cells (MSC) are among the most 
intensely studied cell type in cell therapy and can be iso-
lated from various tissue sources including bone marrow, 
adipose tissue, dental origin, placenta, peripheral blood 
and umbilical cord blood [58]. They are defined as multi-
potent progenitor cells with fibroblast-like spindle shape 
morphology, trilineage mesenchymal differentiation 

Fig. 2 Structure of the retina and overview of various stem cells that may be used to restore damaged cells in Diabetic Retinopathy. ECFC 
Endothelial colony forming cells; MAC Myeloid angiogenic cells; MSC Mesenchymal stromal/stem cells; ASC Adipose stromal/stem cells; iPSC 
Induced pluripotent stem cells; RPC Retinal progenitor cells. Schematic created with BioRender.com
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capacity (adipocytes, osteoblasts and chondroblasts), 
strong adherence to plastic, expression of specific cell 
surface markers and high proliferation capacity [59] and 
therefore hold great potential for regenerative medicine. 
Moreover, in vitro studies have demonstrated MSCs can 
acquire endothelial like markers [60, 61]. MSCs secrete 
a broad range of growth factors and their main mode of 
action is through paracrine and trophic mechanisms to 
promote cell repair and protect against cell stress dam-
age [62]. MSCs have been used as therapeutic agents in 
several preclinical models with a broad range of benefi-
cial effects including vascular protective effects [63]. In 
the oxygen-induced retinopathy (OIR) mouse model, 
intravitreally injected bone marrow derived MSCs 
(BMSCs) showed beneficial vascular effects by reducing 
the avascular area and neovascularization [64, 65]. MSC 
increased blood perfusion in the hind limb ischemia 
model and their angiogenic therapeutic potential was 
further enhanced when MSCs were induced to express 
endothelial markers in vitro prior to cell transplantation 
[66]. In a recent study, MSC where isolated from umbili-
cal cord Wharton’s jelly and induced to differentiate into 
endothelial like-cells. Six weeks after STZ diabetes induc-
tion in old rats, endothelial like MSCs were injected 
intravenously and were able to restore altered vascular 
functions [67].

Several vasoactive progenitors, including  CD34+ cells, 
have been shown to enhance repair of ischemic tissues 
in the retina of preclinical models including streptozo-
tocin (STZ) induced diabetic mouse model [68, 69], reti-
nal ischemia–reperfusion (I/R) injury mouse model [70, 
71] and OIR mouse model [71]. Bone marrow contains 
the highest concentration of  CD34+ cells however, they 
have also been isolated from umbilical cord blood, adi-
pose tissue and fetal liver [72]. While CD34 is the most 
frequently used marker to identify endothelial progeni-
tors, it is also expressed by hematopoietic stem cells, 
differentiated endothelial cells and mesenchymal stem 
cells [73]. As a result, isolated  CD34+ cells represent a 
poorly defined heterogeneous mixture of cells. None-
theless, studies using  CD34+ cells have shown beneficial 
effects, most likely through paracrine mechanisms, in 
preclinical models of DR. Human  CD34+ cells isolated 
from peripheral blood [71] or bone marrow [68, 69] were 
injected intravitreally into STZ-induced diabetic mice 
and were able to home to the damaged tissue and pre-
serve the retinal vasculature. Microarray analysis of the 
retina one week after  CD34+ cell injection revealed gene 
expression changes in pathways related to the patho-
genesis of DR including inflammatory pathways such as 
Toll-like receptor, MAP kinase, oxidative stress, cellular 
development, assembly and organization pathways [68]. 
Intravitreally injected GMP-grade human  CD34+ cells 

in immunodeficient mice were detectable in the retinal 
vasculature four months after injection and the study 
reported no major safety concerns [70]. A currently 
ongoing phase I clinical trial (NCT01736059) using 
intravitreally injected autologous bone marrow-derived 
 CD34+ cells in eyes with ischemic or degenerative retinal 
conditions has not found any local or systemic adverse 
effects or major safety concerns. A larger prospective 
study with longer follow-up is planned to further explore 
the safety and potential efficacy of this cellular therapy 
[74].

Myeloid angiogenic cells (MACs) also known as early 
endothelial progenitor cells (early EPCs) or circulating 
angiogenic cells (CACs) do not have significant prolif-
erative capacity but have pro-angiogenic effects through 
paracrine mechanisms [75]. MACs injected intravitreally 
in the OIR mouse model contributed to vascular repair of 
the ischemic retina by inducing intraretinal angiogenesis 
and reperfusion without incorporating into the endothe-
lium [76].

Endothelial colony forming cells (ECFCs), also known 
as outgrowth endothelial cells (OECs) or late EPCs, are a 
type of endothelial progenitor cell that are isolated from 
peripheral adult blood or umbilical cord blood. They lack 
hematopoietic markers (CD45 and CD14) but possess 
endothelial markers (CD31, CD146, VEGFR2) and are 
committed to endothelial lineage [75, 77]. In vitro ECFCs 
are characterised by a high proliferative and tube-form-
ing potential [78]. Most importantly they can incorporate 
into pre-existing capillaries in  vivo as demonstrated in 
the OIR mouse model [78, 79]. In the diabetic Ins2Akita 
mouse model, intravitreally injected ECFCs, combined 
with recombinant angiopoietin 1 gene therapy, integrated 
into the ischemic vasculature and prevented vision loss 
[80]. ECFCs can induce vasoprotective effects not only 
through directly incorporating into the damaged vascu-
lature but also through paracrine mechanisms such as 
the release of pro-angiogenic factors [81] or the secretion 
of extracellular vesicles [82, 83]. Furthermore, they have 
been shown to provide support to other reparative cells. 
Administration of ECFCs together with mesenchymal 
progenitor cells (MPC) in the hind limb ischemia model 
restored blood flow to a greater extent than ECFCs or 
MPCs administered alone [84]. In human, combined 
administration of ECFCs and MSC accelerated the heal-
ing of diabetic refractory wounds [85].

Induced pluripotent stem cells (iPSCs) are derived 
from mature cells such as dermal fibroblasts reverted to 
pluripotency by retrovirus techniques and expression of 
reprogramming factors [86]. iPSCs can be reprogrammed 
to differentiate into any of the three germ layers and as 
a result hold great promise in the field of regenerative 
medicine. However, the potential of iPSCs to generate 
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teratomas represents a medical risk [87] and therefore 
iPSCs that have reached a certain differentiation stage, 
such as iPSC derived vascular or vascular progeni-
tor cells may provide a safer option [88]. Human iPSC 
derived endothelial cells (hiPSC-ECs) showed greater 
angiogenic potential when compared to mature human 
retinal endothelial cells (HRECs) in response to hypoxia 
in vitro. Furthermore, in the OIR mouse model, hiPSC-
EC injected intravitreally incorporated into the regener-
ating retinal vessels and promoted vascular recovery as 
well as reduction in ischemic retinal area [89]. Prasain 
et  al. optimised a protocol for differentiation of hiPSCs 
into ECFCs. These hiPSC-ECFCs displayed characteris-
tic cobblestone morphology and 3D tube forming poten-
tial in Matrigel similar to cord blood derived ECFCs 
(CB-ECFCs). Furthermore, hiPSC-ECFCs demonstrated 
in  vivo vessel-forming capacity and did not form tera-
tomas after more than 6  months of implantation into 
immunodeficient mice. In both the OIR mouse model 
and hind limb ischemia model hiPSC-ECFCs contrib-
uted to vascular repair similar to CB-ECFCs [79]. Vas-
cular progenitor cells  (CD31+  CD146+) generated from 
cord blood derived hiPSCs (CB-iPSC-VP) migrated into 
deep retinal layers and incorporated into damaged retinal 
vessel in the retinal I/R injury mouse model. Engrafted 
CB-iPSC-VP could be detected long term for at least 
45  days [90]. Interestingly, CB-iPSC-VP were detected 
engrafting in both luminal endothelial and abluminal 
pericytic locations. The location of engraftment was 
influenced by the route of administration: intravitreal 
injection primarily resulted in homing to pericytic loca-
tions while intravenous injection largely led to homing 
at endothelial positions [90]. These findings suggest that 
CB-iPSC-VP may give rise not only to endothelial cells 
but pericytes as well, an exciting therapeutic prospect 
given the important role of pericytes to maintain BRB in 
the retinal microvasculature.

While most effort has been focused on replacing 
endothelial cells to promote vascular repair, protocols 
have been optimised to generate cells expressing char-
acteristic pericyte markers, including CD146, Neuron-
glial antigen 2 (NG2), and Platelet-derived growth factor 
receptor beta (PDGFR-β) from hiPSC [91] and their 
therapeutic potential has been demonstrated in in  vitro 
and in vivo models. Transplantation of iPSC derived peri-
cytes in the murine ischemic limb model promoted vas-
cular repair and muscle recovery [92]. In vitro co-culture 
models demonstrated iPSC derived pericytes were able 
to restore transendothelial electrical resistance (TEER) 
in stressed brain microvascular endothelial cells through 
the secretion of soluble factor [93].

Adipose stem cells (ASC), a type of mesenchymal stro-
mal/stem cell harvested from adipose tissue have been 

shown to have pericyte characteristics and express peri-
cyte markers including α-smooth muscle actin (α-SMA), 
PDGFR and NG2 [94–96]. When injected intravitreally 
in the OIR mouse model, human ASCs promoted ves-
sel regrowth and were able to integrate with the reti-
nal microvasculature and co-localise with capillaries at 
pericyte-specific positions [96, 97]. Some cells remained 
engrafted eight weeks post injection and retained expres-
sion of pericyte markers. Injection of human ASCs prior 
to OIR led to a decrease in avascular area indicating their 
role in stabilizing the retinal microvasculature. The same 
group also showed that isolated murine ASC-derived 
pericytes (α-SMA+  PDGFR+) from epididymal fat pad 
integrated and associated with the retinal microvascu-
lature when intravitreally injected in the Akimba mouse 
model of diabetic retinopathy. Vascular drop out was 
significantly reduced in retinas treated with murine ASC 
[96]. Similarly, in the STZ-induced diabetic rat model, 
human ASCs colocalised with the retinal host vascula-
ture at perivascular positions seven days after intravitreal 
injection and remained there for at least 21 days. Diabetic 
rat retinas that received ASC-derived pericytes showed 
decreased BRB breakdown and retinal endothelial cell 
apoptosis, restored ERG responses and down-regulation 
of inflammatory gene expression compared to saline 
injected retinas [98].

Stem cells for retinal neuropathy
The retina contains five different types of neurons includ-
ing photoreceptors that transform light signals into bio-
logic signals, second order neurons (bipolar, horizontal 
and amacrine cells) that relay the signal and ganglion 
cells that transport the visual signal through the optic 
nerve to the visual cortex in the brain while glia cells 
(Müller cells and astrocytes) provide metabolic and 
structural support [8, 9]. Müller cells are the main glia in 
the retina and span the entire width of the retina allow-
ing them to be in contact with retinal vasculature as well 
as neurons [99]. It has become clear in the literature that 
neurodegeneration is involved in the pathogenesis of 
DR and that some patients might have a primarily neu-
rodegenerative phenotype as opposed to a primarily 
microvascular phenotype [7, 8]. Some individuals with 
diabetes have thinner neural layers due to loss of neu-
rons by apoptosis even before the onset of DR [8, 42]. The 
first neurons affected by diabetes-induced apoptosis are 
ganglion and amacrine cells, but photoreceptors are also 
affected [8]. Apoptosis of ganglion cells was detected in 
the mouse retina as early as 10 weeks after STZ-diabetes 
induction [100] and in the type 2 diabetes mouse model 
(db/db) from 20 weeks of age [101]. In the STZ-induced 
diabetic rat retina, apoptosis of photoreceptors was nota-
ble from four weeks after the onset of diabetes [102, 103]. 
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Apoptosis of cone photoreceptors was detected in post 
mortem retinal tissues of patients with varying degrees of 
DR [104] as well as in three month old diabetic Ins2Ak-
ita mice [105]. Müller cells become activated in diabetes 
as evidenced by increased expression of glial fibrillary 
acidic protein (GFAP), a common marker of reactive glio-
sis. As a result, Müller cells release growth factors such 
as VEGF and cytokines that in the long term contribute 
to neuronal dysfunction [99]. Therapeutic approaches 
including neuroprotection and neuronal cell replacement 
therapy have the potential to be an alternative treatment 
for DR especially in cases with a primarily neurodegen-
erative phenotype [7]. Most neuronal stem cell studies 
to date have focused on the generation and replacement 
of photoreceptors [106] and retinal ganglion cells [107]. 
However, the generation of new functional synaptic con-
nections between transplanted donor cells and remaining 
host neurons remains a major challenge in the field [108].

As mentioned in the previous section, MSC secrete a 
broad range of growth factors including neurotrophic 
factors such as nerve growth factor (NGF) and brain-
derived neurotrophic factor (BDNF) [62]. Intravitreal 
injection of MSCs in the STZ-induced diabetic mouse 
model increased ocular levels of neurotrophic factors, 
reduced lipid peroxidation levels and prevented ganglion 
cell loss at four and 12 weeks after MSC administration 
[109]. BMSCs were able to reduce levels of gliosis and 
improve ERG responses in STZ-induced diabetic rats 
three weeks after intravitreal injection [110]. Benefi-
cial results were also observed in clinical studies where 
Wharton’s jelly derived MSCs injected into the subtenon 
space of the eye of retinitis pigmentosa patients improved 
visual acuity, outer retinal thickness and mfERG results 
six months after implantation. Importantly, no serious 
adverse events or immune rejections were detected dur-
ing the six months follow up [111]. Human bone marrow 
derived  CD34+ cells were also shown to have trophic 
neuroprotective effects in addition to vasoprotective 
effects when injected intravitreally or subretinally into 
retinal dystrophic rats. Functional improvements were 
reported two weeks after cell transplantation includ-
ing increased b-wave amplitude as assessed by ERG and 
preservation of the outer nuclear layer as assessed by his-
tology. However, improvements were transient and not 
detectable seven weeks after transplantation [112].

Retinal progenitor cells (RPCs) are usually derived from 
fetal retinas, embryonic stem cells (ESCs), and induced 
pluripotent stem cells (iPSCs). The human retina at 12 
to 18  weeks of gestation contains progenitor cells that 
can be isolated and expanded in vitro. The isolated cells 
express retinal stem cell markers nestin, Ki-67, PAX6 and 
LHX2 as well as photoreceptor markers (recoverin, blue 
opsin and rhodopsin) after differentiation [113–115]. 

Functional analysis of RPCs indicated typical neural phe-
notype as cells responded with calcium influx following 
neurotransmitter stimulation (glutamate) [115]. Human 
RPCs injected subretinally into the mouse eye were able 
to survive, migrate and integrate with the host retina. A 
small number of transplanted cells expressed rhodop-
sin indicating differentiation into mature photorecep-
tors in vivo [113]. Further studies in retinitis pigmentosa 
animal models confirmed that transplanted cells were 
able to integrate into the host retinas, differentiate into 
photoreceptors and rescue vision [116–118]. However, 
subsequent studies indicated that visual improvement 
may have been a consequence of cell fusion or cytoplas-
mic material transfer from donor to host photoreceptors 
to partially restore their function rather than structural 
integration of donor cells [119–122]. Nonetheless, synap-
tic connections between donor and host cells have been 
demonstrated in an end-stage retinal degeneration model 
(rd1 mouse) where the outer nuclear layer (ONL) of pho-
toreceptors had been lost prior to donor cell transplanta-
tion [123, 124]. Efficacy and safety of human RPCs was 
demonstrated after transplantation of human RPCs in 
wild type and dystrophic rat retinas where no uncon-
trolled cell growth, tumor formation or unexpected alter-
ations to retinal structure were found six months after 
transplantation. Visual improvements were detected by 
optokinetic response measurements as well as increased 
ONL thickness, however both were more pronounced at 
earlier time points after transplantation [125]. Interest-
ingly, improved visual function was longer maintained 
when human RPCs were transplanted together with 
human bone marrow-derived mesenchymal stem cells 
[126]. Fetal-derived RPC transplantation in retinitis pig-
mentosa patients showed improvements in visual acuity 
between two and six months after surgery, however, no 
differences were detectable by 24 months. Nevertheless, 
the clinical study demonstrated that human RPCs were 
safe and tolerated in human without immunological 
rejection or tumor formation [127].

Due to the limited ability of human RPCs to expand in 
culture [113] as well as significant ethical concerns, legal 
and logistical challenges, protocols have been developed 
in recent years using a range of inhibitors and growth 
factors to generate photoreceptors from ESC and iPSC 
[128–132]. Interestingly, ESC and iPSC can self-organize 
and generate optic cups in a three-dimensional culture 
system. This technology not only increases photorecep-
tor yield and reproducibility but also provides a powerful 
platform for disease modelling and translational studies 
[133]. Pre-clinical studies using ESC- and iPSC-derived 
photoreceptors have demonstrated beneficial effects in 
a variety of animal models [129, 130, 134, 135]. Human 
ESC-derived retinal progenitors, transplanted into the 
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subretinal space of adult mice were able to migrate into 
the ONL and expressed photoreceptor specific mark-
ers such as recoverin and rhodopsin. To examine the 
functionality of hESC-derived retinal progenitors, they 
were transplanted into the subretinal space of adult 
Crx − / − mice, a model of Leber’s Congenital Amaurosis 
characterised by photoreceptor degeneration and defec-
tive ERG response. Two to three weeks after transplan-
tation, ERG traces showed some response to light in the 
injected eye while the non-injected eye had no response 
to light. Interestingly, the size of the transplanted area 
correlated with the b-wave response and in injected eyes 
where no cells were found, the ERG response was absent. 
Even though hESC were differentiated to retinal cells 
prior to transplantation, there is a risk of teratomas for-
mation arising from undifferentiated cells. No teratomas 
were found in any of the mice that received transplanted 
cells suggesting no undifferentiated cells had remained 
after the retina directed cell culture differentiation [130]. 
In the dystrophic rat model, injected hESC-derived pho-
toreceptors survived for up to eight weeks and optoki-
netic response was preserved for up to 20  weeks [129]. 
Another study using the rd1 mouse model demonstrated 
that despite a relatively low engraftment yield of hESC-
derived photoreceptor precursors (1.5% of cells inte-
grated into the host ONL) visual improvements were 
observed in two different visual behavioural tests. Fur-
thermore, transplanted photoreceptors were able to elicit 
light responses as measured by ex-vivo multielectrode 
array retinal recordings whereas light responses were 
absent in sham injected retinas [136]. Photoreceptor pro-
genitors derived from hiPSC survived up to three weeks 
post transplantation into the subretinal space of the rd1 
mouse model, differentiated to mature photoreceptors 
and connected to host retinal neurons. Two different 
visual behavioural tests showed visual improvements in 
treated animals [124]. Promising results were obtained 
from studies in non-human primates where photorecep-
tor precursors derived from hESC [134] or hiPSC [135] 
were injected subretinally following photoreceptor abla-
tion. Donor cells were able to survive and differentiate 
into mature photoreceptors, form synaptic connections 
with host bipolar cells and mediate structural recovery.

There is evidence that Müller cells have neural stem cell 
properties and therefore present an attractive source for 
use in cell therapies [137–139]. In zebrafish, Müller cells 
undergo reprogramming upon injury and proliferate to 
progenitor cells leading to retinal repair and restoration 
of vision [140]. Müller stem cells were also described in 
the human adult retina but their regeneration poten-
tial is limited [141]. However, Müller cells isolated from 
mouse and human retinas were able to differentiate into 
neuronal progenitors and photoreceptors during in vitro 

culture conditions [142–144]. Transplantation of Müller 
glia-derived photoreceptors into neonatal mouse eyes 
revealed they can survive, integrate in the retina and 
express rod-specific markers [143]. Furthermore, func-
tional improvements were demonstrated when Müller 
cell derived photoreceptor precursors were transplanted 
into the retinas of P23H rats, a model of rapid photore-
ceptor degeneration. Transplanted donor cells migrated 
and integrated within the host outer nuclear layer. ERG 
performed four weeks after transplantation revealed 
improved responses in eyes transplanted with differen-
tiated Müller cells compared to eyes transplanted with 
undifferentiated cells [145].

In addition to photoreceptor precursors, Müller cells 
have also been successfully differentiated into ganglion 
precursors under defined in  vitro culture conditions. 
Human Müller cell derived ganglion cell precursors, 
transplanted intravitreally into rats that were previ-
ously depleted of ganglion cells, integrated into the host 
retina, localized to the retinal ganglion cell (RGC) layer 
and expressed RGC markers four weeks post transplan-
tation. Partial functional restoration was observed in 
transplanted eyes as assessed by ganglion specific ERG 
responses [146]. Similar functional ganglion cell improve-
ments were observed after transplantation of Müller glia 
derived from retinal organoids formed by hiPSC into the 
same rat model of ganglion cell depletion [147]. Other 
cellular sources for the generation of ganglion cells 
include human ESC and iPSC [148–151]. Ganglion cells 
derived from human ESC under carefully defined culture 
conditions formed extended long neurites, demonstrated 
a similar transcriptome profile as human ganglion cells 
in  vivo and demonstrated functional electrophysiologi-
cal profiles as well as axonal transport of mitochondria 
[148]. Human ESC derived neuronal progenitors injected 
intravitreally into ganglion cell depleted mice were able 
to survive and differentiate to RGC lineage. Visual acuity 
was improved in mice two months after transplantation 
as demonstrated by optokinetic response measurements 
[149]. While not investigated in the context of DR, mes-
enchymal stem cells could be a potential therapy for reti-
nal ganglion cells due to their release of neuroprotective 
factors as demonstrated in animal models of glaucoma 
[152, 153].

Stem cells for replacement of the retinal pigment 
epithelium
There is evidence that changes to the retinal pigment 
epithelium (RPE), located between the choriocapilla-
ris and neurosensory retina, contribute to the devel-
opment of vascular lesions in DR [6]. Tight junctions 
between the epithelial cells form the outer blood-retinal 
barrier (oBRB) that controls the movement of fluid and 
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metabolites into and out of the neural retina [6, 9]. These 
tight junctions are compromised in diabetes and break-
down of the RPE leads to leakage into the neuroretina 
from the choroid as demonstrated in diabetic mice and 
rats by fluorescent microscopy after intravenous injec-
tion with fluorescein isothiocyanate (FITC)-dextran 
[154]. Fluorescein leakage diffused from the RPE has also 
been demonstrated in patients with early stages of NPDR 
[64]. The RPE actively removes water from the subreti-
nal space and plays a critical role in the fluid homeosta-
sis of the outer retina and choroid [155]. Increased fluid 
entry into the retina or decreased drainage function can 
contribute to the development of DME [156]. The RPE is 
also crucial for maintaining the structural and functional 
integrity of the photoreceptors by supplying essential 
nutrients and removing metabolic waste products [157]. 
This transcellular transport is compromised in diabetes 
contributing to DR pathology in the neuroretina even in 
early stages of DR [157]. Most RPE stem cell research to 
date has been conducted in the context of Age-related 
Macular Degeneration (AMD) as RPE dysfunction is the 
main characteristic in this pathology [158] and further 
investigation is needed to assess whether RPE replace-
ment therapy might have beneficial effects in DR. RPE 
cells are easily maintained and unlike photoreceptors do 
not form synaptic connections and therefore present a 
promising target for replacement therapy.

RPE cells have successfully been derived from human 
embryonic stem cells (hESCs) as well as from hiPSC 
[159–161]. Human ESCs-derived RPEs demonstrated 
RPE specific marker expression as well as active phago-
cytosis of photoreceptor outer segments. Importantly, 
no tumor formation or migration to organs was detected 
for up to seven months after subcutaneous injection into 
immunodeficient mice. Furthermore hESC‐RPE were 
detectable in the rabbit subretinal space at four weeks 
after subretinal injection [162]. Additional preclini-
cal studies in animal models of retinal degeneration 
demonstrated that hESC-RPEs were able to protect 
photoreceptors and rescue retinal function [161, 163]. 
Transplantation of a hESC-derived RPE patch in two dry 
AMD patients improved vision for at least 12  months 
as observed in a phase 1 clinical trial. The study further 
demonstrated feasibility and safety of hESC-RPE patch 
transplantation. However local long-term immunosup-
pression was required [164]. Subretinal transplantation of 
hESC-RPE cells has also been performed in a clinical trial 
in patients with Stargardt disease with promising results 
and no adverse effects due to the stem cell therapy [165].

Human iPSC derived RPE cells have been generated 
successfully and were comparable to native RPE cells 
in terms of polarisation, phagocytic activity and gene 
expression pattern [159]. Their phenotype was further 

characterised and additional RPE specific functions 
such as polarised VEGF secretion, ion channel activ-
ity and membrane potential were demonstrated [160]. 
However, hiPSC-RPE displayed fast telomere shorten-
ing, DNA chromosomal damage, increased p21 expres-
sion and growth arrest [160] which may negatively affect 
the survival of transplanted cells especially when placed 
in a hostile microenvironment as is the case in the DR 
retina. Nonetheless, preclinical studies have demon-
strated beneficial effects of transplanted hiPSC-RPE. 
Subretinal space transplantation of hiPSC-RPE cells into 
the retina of retinal degeneration 10 (rd10) mice [166] or 
retinal dystrophic rats [167] had beneficial effects includ-
ing preserving retinal structure, reducing inflammation, 
removing retinal debris and improving visual function. A 
long-term preclinical safety study reported no tumor for-
mation or abnormal proliferation after subretinal injec-
tion of iPSC-RPE cells in immunodeficient mice until 
15 weeks post surgery. In addition, transplanted hiPSC-
RPE cells survived and rescued the visual function for at 
least 15  weeks post surgery under immunosuppressive 
conditions in the retinal dystrophic rat model [168]. In 
a clinical study, where an iPSC-RPE graft sheet, derived 
from the patient’s skin fibroblasts, was transplanted for 
the treatment of AMD, no serious complications were 
reported and no unexpected proliferation or sign of local 
or systemic malignant disease was observed. The patient’s 
visual acuity remained the same after the transplantation, 
however the self-reported vision-targeted health status 
improved [169].

Challenges of stem cell therapy for diabetic 
retinopathy
Despite significant progress made in recent years in the 
field of stem cell therapies to treat diabetic eye disease, 
several challenges remain that need to be addressed. One 
major hurdle for any stem cell therapy for DR is the hos-
tile microenvironment present in the retina [2, 9] that 
besides negatively affecting endogenous repair mecha-
nisms, can also impact homing and survival of trans-
planted donor cells. Genetically engineered stem cells 
that express factors to make cells more resilient may be 
useful to overcome these challenges [170, 171]. Addition-
ally, the impact of the hostile microenvironment may 
be minimised by treating at earlier stages of the disease. 
Initiating treatment early, however, would require the 
identification of individuals at higher risk of sight-loss to 
justify “prophylactic” therapy. Due to technical advance-
ments, currently available clinical diagnostic technolo-
gies including OCT, OCT-A (which allows evaluation 
of superficial and deep retinal capillary plexuses) [39], 
ultra-widefield imaging [40], rapid electrophysiology 
testing (e.g. with systems such as the RETeval) [172], 
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macular microperimentry, and fundus-mapped visual 
field testing [173] allow more appropriate phenotyping 
of patients. However, imaging of the choroid and chorio-
capillaris remains challenging [174]. While progress has 
been made to better understand the underlying patho-
genesis of DR, this remains unclear [6]. Recent reports 
of potentially distinct phenotypes among patients with 
DR (e.g. primarily microvascular degenerative phenotype 
vs primarily neurodegenerative phenotype), highlights 
the importance of choosing the right stem cell therapy 
product for individual patients in order to regenerate the 
predominantly affected cells [7]. Due to the multifacto-
rial nature of DR, combining different stem cells might 
have beneficial effects for the management of DR [126]. 
Furthermore, systemic disease factors such as circulating 
immune cells, blood glucose and lipid levels and blood 
pressure might have an impact on the success of any 
treatment. An attractive alternative to stem cell therapy 
is to protect and reactivate endogenous stem/progenitor 
cells and endogenous repair mechanisms to enable the 
mammalian retina to repair itself. Such therapies may be 
less time consuming and may present fewer complica-
tions such as immune rejection. Several pathways have 
been identified that might be targeted to activate endog-
enous repair mechanisms, but further research is needed 
to confirm their potential clinical application [175]. Since 
DR is a disease that develops over decades, finding the 
best time point for stem cell transplantation or initiation 
of endogenous repair to promote retinal regeneration is 
critical. On the other hand, the slow process of disease 
progression presents a longer time window for treat-
ment before sight-threatening end-stages are reached. 
Finally, any new treatment should be easy to deliver, not 
expensive and with low risk of complications. In addition 
to assessing tumorigenesis of stem cell therapies, host 
immune responses and cell biodistribution, as well as 
other potential complications related to its delivery, need 
to be addressed to ensure the cell therapy product is safe 
and without serious adverse side effects. Proof of efficacy 
and safety as well as appropriate regulatory oversight of 
any new treatment are essential to avoid detrimental out-
comes for patients [176]. Further research is needed to 
address these challenges and to translate restorative stem 
cell therapies into the clinic.

Conclusions
During early stages of DR there is progressive degen-
eration of the retinal neurovascular unit due to pro-
longed hyperglycemia. Current treatment options 
target mainly end-stages of the disease (i.e. DME and 
PDR) and there is an opportunity to address the pro-
gressive loss of vascular and/or neuronal cells earlier 
in the disease process by enhancing endogenous repair 

mechanisms or replacing dying cells through stem 
cell therapies. Even patients with complications of DR 
(macular ischemia, DME and PDR) might benefit from 
stem cell therapies to restore damaged/lost cells. It is 
essential to be able to identify individuals with diabetes 
that would benefit most from such therapies and deter-
mine when they should be offered. Future research is 
needed to advance our knowledge of underlying disease 
mechanisms and to translate findings clinically.
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