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Introduction
Stem cell therapy is an innovative method of treatment 
that uses the distinctive characteristics of stem cells, such 
as differentiation and self-renewal, to repair damaged tis-
sues and cells in the human body or substitute these cells 
with healthy, new, and completely functional cells by pro-
viding exogenous cells into the patient [1]. The sources 
of stem cells used in cell-based therapies are either (1) 
autologous (also known as self-to-self therapies) or (2) 
allogeneic (which uses cells from a healthy donor) [2]. 
In the last 30 years, the use of mesenchymal stem cells 
(MSCs) has gained significant attention. due to their 
fascinating cellular biology, wide-ranging therapeutic 
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Abstract
Advances in stem cell technology offer new possibilities for patients with untreated diseases and disorders. Stem 
cell-based therapy, which includes multipotent mesenchymal stem cells (MSCs), has recently become important 
in regenerative therapies. MSCs are multipotent progenitor cells that possess the ability to undergo in vitro 
self-renewal and differentiate into various mesenchymal lineages. MSCs have demonstrated promise in several 
areas, such as tissue regeneration, immunological modulation, anti-inflammatory qualities, and wound healing. 
Additionally, the development of specific guidelines and quality control methods that ultimately result in the 
therapeutic application of MSCs has been made easier by recent advancements in the study of MSC biology. This 
review discusses the latest clinical uses of MSCs obtained from the umbilical cord (UC), bone marrow (BM), or 
adipose tissue (AT) in treating various human diseases such as pulmonary dysfunctions, neurological disorders, 
endocrine/metabolic diseases, skin burns, cardiovascular conditions, and reproductive disorders. Additionally, this 
review offers comprehensive information regarding the clinical application of targeted therapies utilizing MSCs. 
It also presents and examines the concept of MSC tissue origin and its potential impact on the function of MSCs 
in downstream applications. The ultimate aim of this research is to facilitate translational research into clinical 
applications in regenerative therapies.
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possibilities, and role as a foundational component in the 
emerging field of regenerative therapies [3]. Depending 
on where they were isolated, MSCs can exhibit a broad 
range of cytokine profiles and surface markers [4]. How-
ever, MSCs are generally characterized by CD90, CD105, 
and CD73 expression and by the absence of CD19, 
CD79α, CD34, CD45, CD14 or CD11b, and HLA-DR [5, 
6]. They possess the potential to move to damaged tissue 
through chemo-attraction, making them advantageous 
for a broad range of therapeutic uses [7, 8]. Furthermore, 
MSCs can secrete a range of bioactive substances, such 
as chemokines, proteins, microRNAs (miRNAs), growth 
factors, and cytokines, indicating their potential applica-
tions [9].

Friedenstein initially established a culture of bone-
forming cells using guinea pigs, while Owen renewed this 
investigation by extending this research to rats [10, 11]. 
Human bone marrow MSCs (BM-MSCs) were isolated 
and cultured for the first time in 1992; patient infusion 
of BM-MSCs commenced in 1993, according to a 1995 
report [12, 13]. Infusion techniques in the last 25 years 
have shown a high level of safety, resulting in more than 
950 registered clinical trials using MSCs submitted to the 
FDA [3]. MSCs proliferate easily in vitro, possess unique 
differentiation capabilities not observed in other cell 
types, and secrete an abundance of beneficial cytokines 
and growth factors. The capacity of MSCs to be isolated 
from different tissues and then reimplanted at different 
sites raises the question of whether natural MSCs exist 
in vivo and are capable of repairing endogenous tis-
sues. This process is difficult and has made tremendous 
advancements, but it is not yet completed.

MSCs possess diverse characteristics that make them 
ideal for cell-based regenerative therapy. They exhibit 
stemness potency, can be easily isolated from various 
sources, and can be rapidly developed on a large scale 
for clinical applications. Additionally, they present fewer 
ethical concerns in comparison to embryonic stem cells 
(ESCs) and a decreased chance of teratoma development 
than induced pluripotent stem cells (iPSCs). This review 
presents a comprehensive overview of regenerative 
therapies utilizing MSCs and highlights their remark-
able clinical applications. Moreover, we elaborated on the 
potential of MSCs for “targeted therapy” by elucidating 
their distinct tissue origins and downstream applications, 
as well as providing a comprehensive analysis of their 
underlying mechanisms of action. We finally address the 
reasons that MSCs’ tissue origin may greatly enhance 
their subsequent applications, thereby enhancing the 
effectiveness and safety of stem cell-based therapy.

Cell biology of MSCs
Vertebrate stem cells are distinguished by their ability 
to divide asymmetrically or symmetrically to become 
mobile, differentiate into many lineages, and organize 
into multifunctional groups. A supportive and instructive 
environment is necessary for stem cells to differentiate 
into functionally organized cells. As a result, the phe-
notypic reprogramming of stem cells is determined by 
the cellular environment, as well as the temporal appli-
cation and persistence of instructional agents. Pittenger 
et al. detected this characteristic in MSCs through their 
differentiation into chondrogenic, adipogenic, or osteo-
genic cells within 1 to 3 weeks [14]. Furthermore, Terzic 
et al. demonstrated the multilineage potential of MSCs 
through the progressive acquisition of cardiomyocyte 
characteristics by the sequential modification of culture 
conditions for 3 − 4 weeks [15]. Although the exact timing 
of events may fluctuate slightly for each cell, these com-
bined results of MSC population differentiation reflect 
characteristics at the single-cell level. It is well-known 
that stem cell populations lack uniformity; instead, cells 
within them often display attributes that are character-
istic of individual cells, regardless of their clonal origin 
[16, 17]. During development, stem/progenitor cells fre-
quently exhibit this temporal stochasticity [18]. Stochas-
tic processes and events involving progenitor/stem cells 
are probably the most difficult to explain or approach 
experimentally, even though comparable phenomena can 
be observed in vitro [19].

MSCs are characterized by the ability to differentiate in 
response to stimuli and the in vitro expression of a par-
ticular subset of cell surface proteins [20]. The signifi-
cant expression changes that occur as a result of culture 
expansion, stimulus-directed differentiation, hypoxia 
preconditioning, biologic exposure, trans-differentia-
tion, and coculture with other cell types can offer valu-
able information about the biological characteristics of 
MSCs, their anticipated physiological roles, involvement 
in disease pathophysiology, and potential therapeutic 
mechanisms. Gaining insight into MSC gene expres-
sion data has the potential to enhance the operational 
definition of MSCs, elucidate their intrinsic physiological 
function, and provide guidance on how clinical manufac-
turing protocols and culture conditions can most accu-
rately characterize their function and composition before 
administering them to patients.

BM-MSC identification was the initial objective of 
MSC gene expression research. Through serial analysis 
of gene expression (SAGE), the transcriptomes of human 
and mouse BM-MSCs were compiled, revealing their 
stem/progenitor characteristics as well as paracrine func-
tions associated with skeletal homeostasis and hemato-
poiesis support [21]. The gene expression data provide 
extensive support for the clinical applications of MSC 
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populations, which are known to possess angiogenic, 
skeletogenic, immunomodulatory, and anti-inflammatory 
properties. MSCs obtained from various tissues/organs 
share a closer relationship compared to other mesoder-
mal lineages and exhibit a phenotypic signature resem-
bling perivascular cells [22, 23]. The impact of culture 
conditions on MSC gene expression and the potential 
for manipulation are crucial factors for their therapeu-
tic application. Understanding of the cellular responses 
of MSCs to stimuli that induce differentiation has been 
enhanced by RNA-seq research. As an illustration, a 
study found significant alterations in the MSC transcrip-
tome after differentiation into the adipogenic rather than 
the osteogenic lineage. Furthermore, ChIP-Seq analy-
ses revealed that osteoblasts derived from MSCs had an 
epigenome more similar to naïve cultivated MSCs than 
adipocytes [24]. The MSC genome has significant over-
lap in binding sites for master transcriptional regulators 
like RUNX2 and C/EBPβ. These sites are reduced in size 
through epigenetic changes during differentiation. The 
promoter regions display high plasticity, allowing MSCs 
to change from adipocytes to osteoblasts and vice versa 
[25]. These transcriptional pathways might influence the 
fate of MSC differentiation in vivo. It has been demon-
strated recently that the osteogenic and adipogenic lin-
eages are regulated by the Wnt intracellular signaling 
protein (CCN4 or WISP-1) [26]. The initial application of 
in vitro lineage priming to establish the molecular foun-
dation for MSC multipotency was expanded by these 
results, which may lead to the development of more 
effective therapies.

Aside from stimuli that induce differentiation, vari-
ous treatments have been found to modify the biological 
function of MSCs by changing gene expression. Rodent 
MSCs, for instance, have been shown to have improved 
proliferation and osteogenic capability under low oxy-
gen (5%) environments, which is similar to the condi-
tions found in the BM niche [27]. The proangiogenic 
activity of MSCs was found to be enhanced after tran-
sient exposure to hypoxic settings (< 2% oxygen satura-
tion) in vitro [28] and in vivo [29] and positively affects 
survival and growth [30]. According to profiling studies, 
hypoxic preconditioning significantly alters the expres-
sion of a small fraction of genes linked to MSC glycoly-
sis, cell growth, and survival, as well as vasculogenesis/
angiogenesis. Notably, the majority of these genes exhibit 
upregulation [31]. To gain additional insight into the 
immunomodulatory and anti-inflammatory character-
istics of MSCs, a comparable method is being applied 
to examine their response to inflammatory stimuli. For 
instance, in vitro stimulation of human mesenchymal 
stem cells (MSCs) with lipopolysaccharides, a ligand for 
TRL4, resulted in the upregulation of transcripts asso-
ciated with inflammatory responses and chemotaxis. 

These responses were primarily regulated by interferon 
regulatory factor (IRF1) and nuclear factor kappa B (NF-
κB). [32]. Exposure to interferon (IFN)-gamma activates 
the immunosuppressive function of MSCs by increasing 
the production of indoleamine 2,3-dioxygenase (IDO1), 
an enzyme that reduces inflammation by consuming 
tryptophan in the kynurenin pathway. Additionally, 
stimulation by TNF enhances the expression of TSG-6, 
an anti-inflammatory protein [33, 34]. Notably, it was 
established that while IFN-gamma and TNF-stimulated 
MSCs expressed distinct sets of pro-inflammatory fac-
tors, the combination of these proteins polarized MSCs 
uniformly toward a Th1 phenotype, characterized by the 
expression of the immunosuppressive factors IDO, IL-10, 
CD274/PD-L1, and IL-4 [35]. This result is particularly 
noteworthy because, at the population level, nonstimu-
lated populations showed noticeably higher levels of 
inter-donor heterogeneity, based on data from hierarchi-
cal clustering of MSC donor gene expression [36]. Thus, 
this “cytokine priming” should be investigated in animal 
and human investigations, as treating MSCs with effec-
tive stimuli normalizes the population and may substan-
tially eliminate interdonor differences in MSC function. 
It is imperative to emphasize that exposure to inflam-
matory stimuli, including IFN-gamma and TNF, not 
only improves paracrine signaling but also induces other 
noteworthy effects on MSCs. IFN-gamma, for instance, 
significantly impairs the growth and survival of MSCs 
by upregulating the expression of genes linked to cellu-
lar apoptosis and programmed cell death [37]. The IFN-
gamma treatment-induced gene expression responses of 
MSCs are additionally accompanied by changes in their 
overall morphology [38]. Induced into the osteogenic lin-
eage, MSCs have been observed to possess an increase in 
the expression of IFN-gamma inducible genes, accompa-
nied by a decrease in angiogenic activity [39].

MSCs origin and therapeutic potential
MSCs have been isolated from various tissue types. How-
ever, they can all be categorized into two major sources: 
perinatal and adult (Fig.  1). Adult sources of MSCs 
refer to tissues that can be collected from an individual, 
including peripheral blood, dental pulp, BM, AT, hair, 
lungs, or the heart [40]. Adult MSCs typically exist in 
specialized areas known as stem cell niches, which offer 
the cell-to-cell connections, growth factors, microenvi-
ronment, and external signals required to preserve stem-
ness and differentiation potential [41]. The number of 
MSCs that may be extracted from various adult tissues 
varies greatly, depending on the tissue. Gradient centrif-
ugation reveals that the proportion of MSCs within BM 
mononuclear cells varies between 0.001% and 0.01% [42]. 
AT comprises an estimated 5,000 MSCs per 1  g, which 
is a minimum of 500 times greater than the quantity of 
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Fig. 1 Sources, secretome composition, and therapeutic benefits of MSCs. MSCs can be obtained from several tissues, including the umbilical cord, BM, 
teeth, and AT. Prominent therapeutic applications of MSCs include neuroprotection, wound healing acceleration, angiogenesis induction, inflammation 
suppression, and prevention of cell apoptosis. This figure is modified by the corresponding author with permission from reference [44]
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MSCs found in BM. Placental structures, including the 
amnion, amniotic fluid, and chorion membrane, as well 
as UC-derived components including UC, UC blood, 
and Wharton’s jelly, constitute perinatal sources of MSCs 
[43]. MSCs isolated from BM, AT, and UC meet all essen-
tial requirements outlined by the International Society 
for Cellular Therapy (ISCT), such as specific morphology 
(adherence to plastic and spindle shape), expression of 
MSC surface markers (at least 95% positive for CD105, 
CD90, and CD73; less than 2% negative for CD45, CD34, 
CD19, CD13, CD11, and HLA-DR), and capability to dif-
ferentiate into osteocytes, chondrocytes, and adipocytes 
[41].

MSCs obtained from adult or perinatal origins share 
basic properties and morphological similarities, research 
has shown that these cells are distinct from one another. 
According to the study, AT-MSCs exhibit low levels 
of Stro-1 and high levels of CD49d, with CD49d being 
more highly expressed in AT-MSCs than BM-MSCs [45]. 
BM-MSCs exhibit elevated CD133 expression, which is 
linked to metabolic processes, stem cell development, 
and regeneration. UC-MSCs have higher rates of attach-
ment and proliferation than AT- and BM-MSCs due to 
the expression of CD146 [46]. Whereas AT-MSCs have 
a higher capacity for adipogenic differentiation, BM-
MSCs are more likely to differentiate into osteogenic 
tissue [47]. Although UC-MSCs are capable of differen-
tiating into osteocytes, adipocytes, and chondrocytes, 
their capacity for osteogenic differentiation is more pro-
nounced in comparison to BM-MSCs [48]. However, the 
precise mechanism by which MSCs from various sources 
induce an immune response remains inadequately under-
stood, necessitating extensive preclinical and clinical trial 
research.

Comprehending the distribution of MSCs after admin-
istration is essential for enhancing our understanding of 
their therapeutic mechanisms and ensuring their appli-
cation in clinical trials. Preclinical data with different 
labeling strategies demonstrate that MSCs do not expe-
rience undesired homing, which could produce unfavor-
able outcomes. Human BMMSCs and AT-MSCs, when 
administered intravenously in a mouse model, were 
quickly captured in the lungs and recirculated through-
out the body [49]. Human cells infused intravenously, 
on the other hand, exhibited prolonged persistence in 
numerous tissues after administration [50]. When MSCs 
were injected locally, they showed a preference for hom-
ing to specific tissues, with most of the injected cells 
being located in the renal cortex [51]. Research indicates 
that MSCs attract to and move toward the damaged area, 
as observed in the therapy for type 2 diabetes and inter-
vertebral disc degeneration [52, 53]. Since MSCs are resi-
dent in the splenic or pancreaticoduodenal arteries, local 

distribution of MSCs by the intraarterial route is more 
efficient compared to IV.

MSCs have demonstrated efficacy in treating several 
diseases such as nervous system and brain problems, 
lung diseases, wound healing, and cardiovascular con-
ditions, supported by extensive preclinical research and 
advances in clinical trial strategies [54, 55]. Extensive 
reviews and thorough studies have consistently shown 
that MSC-based therapy has high safety profiles and 
favorable results in various studied conditions [56]. Fur-
thermore, the information that is currently available has 
identified several possible processes that might account 
for the advantageous impacts of MSCs, such as their 
capacity for differentiation, homing efficiency, trophic 
factor production (such as chemokines, cytokines, and 
growth factors), and immunomodulatory properties. 
However, because MSCs appear to have positive benefits 
independent of their source, it is still unclear which types 
of MSCs should be employed for particular diseases [57].

Current and emerging clinical applications of MSCs 
in Human diseases
Neurological diseases
Neurological impairments are typically considered irre-
versible as a result of restricted central nervous system 
(CNS) regeneration. The range of therapeutic alterna-
tives for neurological disorders is limited in comparison 
to that of other conditions. Newly formed neurons in the 
hippocampus of adult humans and the migration of brain 
stem cells in animal models have both provided evidence 
to challenge the theory that brain cells are incapable of 
regeneration [58]. The preceding findings have generated 
anticipation regarding the potential of exogenous stem 
cell sources to restore or enhance the stem cell popula-
tion in the brain, particularly in the context of neuronal 
diseases. Furthermore, conventional therapies for neu-
rodegenerative disorders including autism, stroke, cere-
bral palsy, and spinal cord injury (SCI) are impeded by 
the brain and spinal cord’s compromised regenerative 
capacity. In light of the inability of existing therapies to 
impede the advancement of these conditions, investiga-
tions have been conducted globally to analyze cell-based 
therapies, including the utilization of MSCs, as a poten-
tial treatment for neurodegenerative diseases. For stem 
cell treatment to effectively treat brain diseases, thera-
peutic cells must go to the damaged areas of the brain to 
replace, repair, or at least stop the degenerative effects 
of neuronal damage [59]. The ultimate goal of cell-based 
therapy is to transport the cells to the target site, acti-
vate the tissue repair mechanisms, and control immune 
responses via either paracrine effects or cell-to-cell con-
tact [60]. MSCs are commonly utilized in many clinical 
trials focusing on a range of neurological disorders such 
as multiple sclerosis [61], stroke [62], SCI [63], cerebral 
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palsy [64], hypoxic-ischemic encephalopathy [65], autism 
[66], Alzheimer’s disease (AD), Parkinson’s disease, and 
ataxia [67]. Approximately two-thirds of these trials uti-
lized MSCs primarily to treat multiple sclerosis, stroke, 
or SCI.

The most common form of cerebral disease is ischemic 
stroke [68]. MSCs exhibit the most promising potential 
for stroke therapy when compared to other forms of stem 
cells. Due to their immunomodulatory potential, neuro-
protective, and neurogenic attributes, MSCs have been 
the subject of extensive research as a potential treatment 
for acute, subacute, and chronic stroke in numerous 
animal models [69]. In acute stroke, the inflammatory 
response is upregulated, destroying hypoxic tissue in the 
site of injury and the initiation of cytokine cascades that 
cause the enlargement of the damaged region, in addition 
to neuronal death. MSCs inhibit inflammation via the 
transport of the neuroprotective factor and their immu-
nomodulatory capacity [70].

Furthermore, ischemic–reperfusion injury was pre-
vented in damaged cerebral microvasculature by engraft-
ing MSCs. One important factor contributing to the 
positive impact could be the mitochondrial transfer 
between external MSCs and impaired endothelial cells 
[71]. In addition to stabilizing the blood-brain barrier, 
MSCs may have therapeutic potential for functional 
enhancement following a stroke. Infusion of MSCs into 
various stroke models decreased the permeability of 
damaged neural tissue across the BBB [72]. According to 
the experimental findings, spinal cord injury (SCI) mice 
and rats treated with MSCs exhibited enhanced neural 
repair, neuroprotection, and neurogenesis-promoting 
trophic factors in the injured brain [73, 74]. It has been 
demonstrated that genetically modified MSCs increase 
hippocampal neurogenesis and improve cell homing to 
the site of injury in mice with TBI. The migratory capa-
bility of MSC-CXC-R4 in mice with TBI is also enhanced 
[75, 76]. One effective method is to increase the expres-
sion of anti-inflammatory substances like IL-4 or IL-10. 
These substances protect neural cells against inflamma-
tion and encourage microglia to display M2 markers [77].

MSC transplantation offers novel therapeutic prospects 
for AD. MSCs have demonstrated the ability to reduce 
A𝛽 deposits and aberrant protein degradation, enhance 
acetylcholine levels, and promote neuronal survival in 
preclinical studies, ultimately enhancing spatial learning 
memory in animal models of AD [78, 79]. Furthermore, 
MSC transplantation in rodents with AD improves syn-
aptic stability and stimulates hippocampal neurogenesis 
[80]. Significantly, MSC infusion controls neuroinflam-
mation in the brains of AD patients by modulating the 
activation of microglia and astrocytes. A preclinical study 
has shown promising results in improving symptoms of 
AD, indicating great potential for using MSC therapy in 

individuals with AD [81]. Using the stereotactic cerebral 
infusion of MSCs in AD patients showed that the proce-
dure was safe, practical, and devoid of major side effects 
[82]. Research has also demonstrated that MSC trans-
plantation may improve motor dysfunctions associated 
with Parkinson’s disease (PD) [83]. Behavioral experi-
ments revealed that systemic infusion of human MSCs 
into rats with PD disorders decreased uncoordinated 
limb movement. A wide range of factors, including those 
secreted by exogenous MSCs, exhibit immunomodula-
tory characteristics, impede apoptosis, enhance neuro-
nal survival, and distinguish between PD mice and rats 
[84, 85]. The amount of tyrosine hydroxylase (TH) and 
the number of DA neurons in the injured region were 
measured after MSC transplantation to the brains of PD 
mice.

Furthermore, the primary objective of therapies for 
Amyotrophic Lateral Sclerosis (ALS) disorders is to 
reduce inflammation; thus, cell-based therapies employ-
ing ALS with immunomodulatory properties hold prom-
ise for the treatment of ALS [86]. According to preclinical 
research, MSC transplantation modulates the immune 
response associated with MS disease. Transplanted 
MSCs diminish microglial activation and enhance neu-
roprotection by maintaining a favorable microenviron-
ment through the release of several anti-inflammatory 
cytokines and neurotrophic factors [87]. In MS ani-
mal models, it has been shown that MSC infusion pro-
motes oligodendrogenesis, enhances remyelination, and 
increases nerve conduction velocity [88]. A few patients 
with progressive MS who received autologous MSC infu-
sions experienced a marginal improvement in their neu-
rological disability. By inhibiting dendritic cells and T1 
lymphocytes, inducing microglia with a phenotype tran-
sition from M1 to M2, and increasing the levels of anti-
inflammatory cytokines in MS patients following MSC 
infusion, the immunomodulatory effect of MSCs was 
validated [89].

Another phase 2 trial, conducted by Connick et al., 
assessed the safety and feasibility of autologous BM-
MSCs in secondary progressive MS, showing promising 
results in terms of safety and some improvement in visual 
function [90]. Moreover, in a randomized, double-blind 
phase 2 trial (MESEMS) conducted across several cen-
ters in Europe, the use of autologous MSCs derived from 
bone marrow was evaluated. The study found that MSC 
treatment was associated with a reduction in the num-
ber of new gadolinium-enhancing lesions on MRI and 
suggested possible clinical benefits [91]. A more recent 
study by Uccelli et al. evaluated the long-term safety and 
efficacy of MSC treatment in MS patients. The results 
indicated that MSCs could provide sustained immuno-
modulatory effects and improve clinical outcomes over 
an extended period [92].
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These studies collectively underscore the potential 
of MSCs as a therapeutic option for MS, highlighting 
their safety profile and potential to modulate the dis-
ease course. However, it is crucial to note that further 
research, particularly larger and more comprehensive 
phase 3 trials, is needed to establish the definitive clinical 
efficacy and to standardize protocols for MSC therapy in 
MS.

Several clinical trials have utilized autologous BM-
MSCs to treat neurological disorders, with some dem-
onstrating enhanced outcomes and safety [93]. One 
study from 2005 indicated that stroke patients treated 
with MSCs had a higher Barthel index (BI). Autologous 
BM-MSCs increased in vitro and enhanced the patient’s 
modified Rankin Scale (mRS), according to a follow-up 
investigation [94, 95]. In a current randomized controlled 
trial, autologous BM-MSCs administered with autolo-
gous serum were found to be safe; however, no enhance-
ments in modified Rankin Scale scores were observed 
[62].

A 5-year follow-up study revealed that motor func-
tion scores significantly improved in the MSC group [96]. 
Patients diagnosed with chronic stroke have demon-
strated a notable enhancement in both the BI score and 
the National Institutes of Health Stroke Scale (NIHSS) 
following a single intravenous administration of alloge-
neic BM-MSCs [97]. BM-MSCs are limited by the inva-
sive nature of BM aspiration, which may lead to problems 
in elderly and pediatric patients [98]. UC-MSCs are 
being investigated as a substitute for treating neurologi-
cal conditions in about 1550 individuals globally [99]. A 
recent study demonstrated that administering UC-MSCs 
enhanced gross motor function and cognitive abilities in 
cerebral palsy patients. The effects peaked at 6 months 
post-administration and persisted for 12 months after the 
initial transplantation [100].

Cardiovascular diseases
Cardiovascular diseases (CVDs) are a significant cause 
of the global disease burden because of their high rates 
of morbidity and mortality [101]. Infectious and non-
infectious factors contribute to the development of 
CVDs. Infectious CVD encompasses conditions such 
as rheumatic heart disease, HIV-induced disease, and 
tuberculous pericarditis. Noninfectious CVD includes 
hypertension, stroke, peripheral artery disease, and 
myocardial infarction (MI). The prevalence of CVD due 
to noninfectious causes, particularly ischemic CVDs 
like MI, is expected to rise in the future [102]. Signifi-
cant progress has been made in the past 20 years in the 
advancement of innovative cardiovascular research and 
regenerative medicine, particularly in stem cell tech-
nologies [103]. Owing to the potential for immaturity 
and teratoma formation, human embryonic stem cells 

and human induced pluripotent stem cells (hiPSCs) are 
not clinically applicable in the treatment of CVD, despite 
their therapeutic potential [104, 105]. Under the influ-
ence of paracrine effects, stem cells, including adult 
stem cells and progenitor cells, are capable of inducing 
myocardial repair after administration [106]. MSCs are 
crucial in treating CVD because of their unique charac-
teristics such as their capacity to transform into cardio-
vascular cells, immunomodulatory abilities, anti-fibrotic 
properties, and capability to engage in neovasculogenesis 
[107]. The positive outcomes of MSC-based treatment in 
preclinical research on cardiac diseases improve under-
standing and support further investigation of its safety 
and effectiveness in clinical trials [108, 109].

After transplantation, MSCs exhibit a zonal distri-
bution in myocardial tissue comparable to that of car-
diac myocytes. They transform into cardiomyocytes by 
increasing the expression of myocardial-specific marker 
proteins such as troponin T. Perivascular cells from 
human UC aggregate on cardiomyocyte feeder layers 
within one week, producing contracting cell clusters 
[110]. MSC migration and survival can be stimulated in 
vitro by basic fibroblast growth factor (bFGF), thereby 
preventing adverse remodeling and restoring cardiac 
function [111]. Another method for inducing cardiac dif-
ferentiation is to separate and amplify high-purity MSCs 
within cardiomyocytes while simultaneously stimulating 
them with bFGF and hydrocortisone [112]. Genetically 
engineered MSCs can differentiate into cells resem-
bling cardiomyocytes, and their main impact on treating 
CVD is largely reliant on their paracrine function [113]. 
MSCs modulate the immune system by inhibiting spe-
cific types of white blood cells, such as T lymphocytes 
and B lymphocytes, and reducing inflammation [114]. 
Following MI, monocytes move to the site of infarction 
and undergo differentiation into macrophages. These 
cells release growth factors, chemokines, and cytokines 
to eliminate apoptotic neutrophils and infarct myocar-
dial cells (Fig. 2). The process of activating macrophages 
results in the production of various cell types with dis-
tinct immune functions. Specifically, M1 macrophages 
generate tumor necrosis factor, interferon, and interleu-
kin-23, while M2 macrophages are activated and induced 
by Th2-related cytokines or glucocorticoids, which in 
turn promote angiogenesis and cell proliferation [115]. 
MSCs have been shown to reduce the amount of proin-
flammatory monocytes with moderately or increased 
Ly6C levels, as well as the severity of myocarditis [116]. 
In vitro, the inflammatory response is inhibited by the 
interaction between macrophages and MSCs, which 
increases the expression of the anti-inflammatory cyto-
kine IL-10 and CD206 [117]. Additionally, MSCs regulate 
the immune system via paracrine mechanisms, including 
the downregulation of IL-1, TNF-α, and IL-6 expression 
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and the enhancement of cardiac function in mice with 
MI [118, 119].

In recent studies, preconditioning has shown signifi-
cant promise in enhancing the therapeutic efficacy of 

treatments. Preconditioning refers to a process where 
cells are exposed to specific conditions or stimuli to 
improve their survival, integration, and function post-
transplantation. This process is crucial for improving 

Fig. 2 (A) MSCs treat CVD by regulating inflammation, preventing fibrosis, promoting neovascularization, and differentiating into cardiomyocyte-like 
cells. (B) Approaches to improve the therapeutic impact of MSCs in CVD. To improve the therapeutic effects of MSCs, techniques such as 3D culture, 
patches containing MSCs, preconditioning with hypoxia or chemicals, gene modification, and viral injections combined with small compounds or shRNA 
have been employed. This figure is modified from reference [107]
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outcomes in various regenerative therapies. Gene modi-
fications have emerged as a powerful tool to enhance the 
therapeutic potential of multiple treatments [120]. By 
altering specific genes, researchers can improve cell func-
tion, increase resistance to apoptosis, and promote tissue 
regeneration. Recent advancements in CRISPR technol-
ogy have further accelerated progress in this field [121].

Moreover, 3D patches have been developed to provide 
structural and functional support to damaged tissues. 
These patches are designed to mimic the extracellular 
matrix, offering a conducive environment for cell growth 
and integration. Studies have demonstrated the effective-
ness of 3D patches in promoting tissue repair and regen-
eration [122, 123]. Co-injections with small molecules 
and viruses are being explored to enhance the delivery 
and efficacy of therapeutic agents. Small molecules can 
modulate cellular pathways to promote survival and 
function, while viral vectors can facilitate targeted gene 
delivery. This combination has shown potential in various 
preclinical models [124, 125] Fig. 2.

MSCs can modulate matrix metalloproteinase activ-
ity, suppress fibroblast activation, decrease extracellular 
matrix accumulation, and enhance myocardial func-
tion. The Hepatocyte Growth Factor (HGF), produced 
by MSCs, is a potent inhibitor of fibrosis and is the main 
factor responsible for its anti-fibrotic impact in vitro 
[126]. Additionally, MSCs fight fibrosis by blocking miR-
155-mediated profibrotic signaling and releasing HGF 
when they come into direct contact with other cells 
[127]. The antifibrotic effects of gene-modified MSCs 
are more pronounced, as evidenced by the overexpres-
sion of miR133 in MI and IGF-1 in mice [128]. MSCs 
overexpressing miR133 decreased fibrosis in MI by sup-
pressing Snail 1, a key controller of epithelial-to-mes-
enchymal transition (EMT), and promoting fibrosis in 
developmental and pathological conditions [129]. Native 
perivascular cells include MSC markers on their surface, 
which suggests that blood vessel walls contain a reser-
voir of progenitor cells. According to in vivo research, 
transplanted BMSCs can develop into endothelial cells, 
which increases microvascular density and enhances car-
diac function in MI rat models [130]. Some researchers 
suggest that transplanted BMSCs facilitate angiogenesis 
and cardiac repair by releasing arteriogenesis factors and 
angiogenesis factors through indirect paracrine signaling 
[131]. To promote vascular repair and prevent the dete-
rioration in heart function, BMSC transplantation com-
bined with vascular endothelial growth factor (VEGF) 
treatment resulted in a considerable increase in vascular 
density and a decrease in collagen content [132]. MSCs 
also enhance angiogenesis through paracrine mecha-
nisms, such as cardiac MSC-secreted exosomes enhanc-
ing cardiomyocyte proliferation and capillary density 
[133].

Chronic heart failure was initially investigated and 
treated with MSCs in the Cardiopoietic Stem Cell Ther-
apy in Heart Failure (C-CURE) trial. The trial demon-
strated enhancements in cardiovascular metrics, quality 
of life, functional status, and physical health [134]. In 
the CHART-1 trial, the treatment was unable to attain 
the desired primary outcomes [135]. The POSEIDON 
experiment showed that allogeneic BM-MSCs were more 
effective than other sources [136]. The MSC-HF trial and 
TRIDENT research both showed favorable results of 
BMMSCs in treating heart failure [137, 138]. UC-MSCs 
are promising allogeneic cells for treating CVD due to 
their ease of isolation, fast proliferation, and secretion 
of hepatocyte growth factors that play a role in cardio-
vascular regeneration and cardioprotection [139]. The 
RIMECARD trial, a pilot study involving 30 patients 
with heart failure, was the first reported trial to demon-
strate the effectiveness of UC-MSCs. The results showed 
improvements in ejection fraction, left ventricular func-
tion, functional status, and quality of life in patients who 
received UC-MSCs [140]. Promising results from the 
HUC-HEART experiment in phases I and II indicated 
enhancements in LVEF and decreases in the size of the 
damaged myocardium area [141]. UC-MSCs with a col-
lagen scaffold, however, did not significantly reduce the 
quantity of fibrotic scar tissue in patients with ischemic 
heart issues in a recently reported phase I randomized 
experiment [142]. The safety and feasibility of MSCs from 
AT, BM, and UC in treating CVD have been established. 
However, the relationship between the kinds of MSCs 
and their therapeutic effectiveness remains unclear due 
to varying outcomes in different clinical studies. Thus, 
the utilization of MSC-based therapy in CVD is still in its 
early phase, offering prospective advantages to patients. 
Large-scale, well-organized randomized clinical trials are 
therefore required to confirm the therapeutic potential 
of MSCs derived from various sources and to improve 
our understanding of cardiovascular regeneration after 
treatment.

Respiratory diseases
Over the past decade, there have been notable increases 
in the prevalence of respiratory diseases attributed to 
factors including air pollution, smoking habits, the aging 
of the population, and more recently, respiratory virus 
infections like coronavirus disease 2019 (COVID-19). 
These developments have placed considerable strains on 
healthcare systems and public health systems on a global 
scale [143]. In recent years, chronic obstructive pulmo-
nary disease (COPD), acute respiratory distress syn-
drome (ARDS), and bronchopulmonary dysplasia (BPD) 
have emerged as the three most prevalent inflammatory 
pulmonary diseases in infants and adults [144]. Air-
way remodeling, inflammatory cell infiltration, alveolar 



Page 10 of 22Zhidu et al. Stem Cell Research & Therapy          (2024) 15:266 

structural integrity disruption, alveolar fluid clearance 
impairment, cytokine release, related cytokine storms, as 
well as the development of pulmonary fibrosis are typical 
pathological features associated with these conditions. 
Conventional therapies employ surfactants, mechani-
cal ventilation, artificial respiratory support, antibiotics/
anti-inflammatory medications, and surfactants to lessen 
symptoms and hinder the disease’s progression. The 
impaired pulmonary epithelial cells and airway destruc-
tion, as well as other pathological respiratory system 
damages induced by the inflammatory response, remain 
largely unaffected by conventional drug interventions 
[144]. As a result of their ability to proliferate, differen-
tiate in multiple directions, and exert immunoregulatory 
effects, stem cells, and MSCs in particular, have dem-
onstrated tremendous therapeutic potential. Multiple 
systemic or endotracheal MSCs have demonstrated sig-
nificant therapeutic effects against a variety of respiratory 
inflammation diseases, according to several preclinical 
investigations [145, 146].

Due to their inherent characteristics, MSCs can be 
utilized to treat common inflammatory diseases of the 
respiratory tract. For instance, immunological compat-
ibility permits MSC transplantation to pass across his-
tocompatibility obstacles, which infrequently results 
in an immune response [147]. Additionally, similar to 
endogenous MSCs, exogenously imported MSCs can 
migrate to impaired tissues via the SDF-1-CXCR4 axis. 
This migration is mediated by stromal cell-derived fac-
tor-1 (SDF-1), which is generated by the damaged lung 
tissue and binds to the MSC’s C-X-C motif chemokine 
receptor 4 (CXCR4) [148]. Moreover, MSCs are capable 

of differentiating into type II alveolar epithelial (ATII)-
like cells, secreting a variety of bioactive molecules with 
immunomodulatory properties that can promote tis-
sue regeneration, and inhibiting immune cells via cel-
lular interactions. Immunomodulatory substances can 
alter macrophages from M1 to M2 phenotype, hinder 
the migration of macrophages, neutrophils, and mono-
cytes, impede the development of TH17 and TH1 cells, 
and encourage the generation of Treg cells [149]. The pul-
monary vascular endothelial cells and alveolar epithelial 
cells can be protected from harm by growth factors [150]. 
The full extent of MSC differentiation capability has not 
been thoroughly examined. MSCs have been shown to 
differentiate into myofibroblasts and worsen pulmonary 
fibrosis in specific experimental settings. Therefore, it is 
crucial to identify suitable cultural conditions that guide 
MSC differentiation in the desired direction [151]. Fur-
thermore, the secretome of MSCs is thought to be the 
primary mechanism by which MSCs can function in lung 
damage, as it plays a significant role in immunomodula-
tion and tissue regeneration (Fig. 3). Cell-to-cell commu-
nication enables MSCs to modulate cell proliferation and 
the secretion of diverse immune cells additionally. TSG6 
and PGE2, which are released by MSCs, can modify the 
inflammatory phenotype of macrophages [152]. Mac-
rophages can ingest extracellular vesicles (EVs) released 
by MSCs containing active mitochondria that increase 
oxidative phosphorylation, hence improving their anti-
inflammatory properties. In preclinical lung disease 
models, MSCs have also been shown to hinder neutrophil 
infiltration in a manner dependent on IDO [153, 154]. 
MSCs also can indirectly regulate adaptive immune cells 

Fig. 3 (A) The primary functions of MSCs in asthma, ARDS, idiopathic pulmonary fibrosis (IPF), and COPD. (B) Characteristics of MSCs in common respira-
tory inflammatory diseases. This figure is adapted and is freely accessible online from reference [163], Licensed under a Creative Commons Attribution 
4.0 International License (CC BY 4.0)
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by modulating innate immune cells [152]. For instance, 
MSCs can transform mature DCs into a suppressing 
immature phenotype and stimulate the development of 
IL-10-positive pDCs (plasmacytoid DCs), which inhibit 
effector T-cells and generate Treg cells [155]. MSCs 
are capable of directly inhibiting effector T-cells via the 
secretion of anti-inflammatory molecules, including IL-
1ra, IDO, and PD-L1. Furthermore, MSCs activated by 
proinflammatory cytokines can generate ligands, such 
as CXCL9, CCL5, and CXCL11, for the CXC-chemokine 
receptor 3 (CXCR3) and the CC-chemokine receptor 5 
(CCR5). In addition to secreting IDO/iNOS, which inhib-
its T cells in their vicinity, these chemokines also attract 
T cells to MSCs [152, 156]. In asthma, MSCs can attenu-
ate airway hyperresponsiveness and reduce inflammation 
by modulating the activity of T cells and other immune 
cells [157].

Similarly, in ARDS, MSCs contribute to the repair of 
damaged alveolar epithelium and mitigate inflammation 
through the secretion of anti-inflammatory cytokines 
and growth factors [158]. In the case of IPF, MSCs help in 
reducing fibrosis by inhibiting fibroblast proliferation and 
differentiation, thus slowing down the progression of the 
disease [159]. For COPD, MSCs can enhance lung func-
tion and repair by reducing oxidative stress and inflam-
mation, and by promoting the regeneration of damaged 
lung tissues [160].

The characteristics of MSCs in common respiratory 
inflammatory diseases further underscore their thera-
peutic potential. MSCs are characterized by their ability 
to migrate to the sites of inflammation and injury, where 
they exert their reparative functions. They can differ-
entiate into various cell types, including epithelial cells, 
which is particularly beneficial for lung repair. MSCs also 
secrete a wide array of bioactive molecules, such as IL-10, 
TGF-β, and HGF, which play pivotal roles in modulating 
immune responses and promoting tissue regeneration 
[161]. Additionally, MSCs exhibit low immunogenicity, 
allowing for allogeneic transplantation without eliciting 
significant immune rejection [162]. This makes MSCs 
an attractive option for developing cell-based therapies 
for respiratory inflammatory diseases, offering hope for 
improved outcomes and quality of life for patients suffer-
ing from these chronic and often debilitating conditions 
(Fig. 3).

Extremely premature infants have lung development 
issues before alveolarization and pulmonary maturation, 
leading to BPD [164]. These newborns need specialized 
care for the initial three months, which includes inter-
ventions after birth. Continued infections impede the 
development of the lungs even further [165]. Several 
clinical trials involving the recruitment of 566 premature 
infants from around the globe have been proposed to 
utilize UC-MSCs for the treatment of BPD. Due to their 

accessibility, minimal antigenicity, rapid proliferation, 
regenerative capacity, and ethical implications, human 
UC tissue and its derivatives are exceedingly desirable 
cell sources for MSCs in treating BPD. Using MSCs 
derived from UC blood, Chang et al. prevented BPD in 
nine premature infants [166]. All individuals survived, 
with only three individuals developing BPD. The sever-
ity was significantly less in the infants than in the control 
group. Unrelated to the intervention, a follow-up analy-
sis discovered one infection after discharge. All eight 
remaining patients survived with normal lung function, 
demonstrating the safety of the treatment. MSC treat-
ment was safe in preterm infants, according to a phase II 
clinical research comprising 66 infants between the ages 
of 23 and 28 weeks. However, because of the limited sam-
ple size, statistical analysis could not support the trial’s 
efficacy. Patients with severe BPD born between 23 and 
24 weeks showed a significant improvement in severity 
compared to those born at 25–28 weeks [167]. Conse-
quently, larger, controlled trials are required to verify the 
efficacy of MSCs derived from UC blood in the treatment 
of BPD.

COPD is a common lung condition characterized by 
ongoing symptoms and restricted airflow. The condi-
tion is a result of chronic bronchitis, deterioration of 
lung tissue, alterations in immune cell function, oxida-
tive stress, and imbalances in protease activity [168]. The 
objective of MSC therapy for COPD is to stimulate the 
parenchymal cell and alveolar structure regeneration 
to restore lung function. Research indicates that MSCs 
can help relieve symptoms of emphysema and inflam-
mation, enhance treatment outcomes in experimental 
COPD, decrease neutrophil infiltration and cell death, 
enhance elastic fiber content, and lower levels of kerati-
nocyte-derived chemokines [169, 170]. Five clinical trials 
have utilized BM-MSCs as stem cells for treating COPD, 
however, the outcomes did not demonstrate notable ther-
apeutic benefits [171–173]. After three years of adminis-
tering BM-MSC, a phase I trial demonstrated a decrease 
in the progression of COPD pathology [171]. UC-MSCs 
have recently been identified as possible allogeneic stem 
cell options for treating COPD [174]. A preliminary clini-
cal investigation established the potential efficacy and 
safety of UC-MSC allogeneic administration for COPD 
treatment [175]. Cell-based therapy was administered 
to 20 patients who had a documented history of smok-
ing in one of the studies. Six months after treatment with 
UC-MSC, the number of pulmonary exacerbations and 
patient scores on COPD assessment tests decreased sig-
nificantly. At three months following administration, the 
mean FEV1/FVC ratios, as well as the SGRQ scores and 
6MWTDs, improved in the second experiment utilizing 
UC-MSCs [176]. The number of clinical trials employ-
ing UC-MSCs to treat COPD is consistently rising, 
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incorporating stronger designs and larger sample sizes. 
This accumulation of data provides strong support for the 
prospective applications of UC-MSCs. However, compre-
hensive evaluations of their efficacy are still in their early 
stages [177].

Acute respiratory distress syndrome (ARDS) is a seri-
ous respiratory disease that is defined by progressive lung 
failure as a result of lung tissue alterations brought on by 
both infectious and noninfectious agents. There are cur-
rently 13 registered clinical trials using MSC treatment 
for patients with ARDS. Despite their early stages and 
small sample sizes, all of them were able to effectively 
evaluate the safety of administering MSCs and the effec-
tiveness of treatment in terms of clinical outcomes, such 
as hemodynamics, inflammation, and respiratory and 
systemic parameters. MSC injection has been shown in 
multiple recent clinical trials to alleviate ARDS symptoms 
in COVID-19 patients [178, 179]. However, this clinical 
research exhibits significant variation concerning inclu-
sion and exclusion criteria, duration of follow-up, dose 
of MSC, source, mode of administration, and frequency 
of treatment, similar to the majority of experimental tri-
als [180]. To target the pathogenic mechanism of SARS-
CoV-2, MSCs have the potential to be utilized as a cell 
therapy to treat COVID-19. As previously indicated, the 
patient will experience tissue damage as a result of the 
immune system’s overreaction to COVID-19. Addition-
ally, MSC therapy can reverse the complicated cytokine 
storm by promoting endogenous tissue repair of injured 
tissues through its stem cell repair characteristics and 
lowering the amount of several inflammatory factors, 
including TNF-α [181, 182]. MSCs have the potential to 
restore the pulmonary microenvironment, impede pul-
monary fibrosis progression, protect alveolar epithelial 
cells, and provide a remedy for both COVID-19 pneumo-
nia and lung dysfunction [183]. Numerous case studies 
and clinical research have demonstrated that MSCs are 
safe and efficient in treating COVID-19 patients, particu-
larly acute patients, by enhancing their clinical symptoms 
and immune system performance [184]. In a phase 2 trial, 
Shi Land and colleagues demonstrated the safety and 
effectiveness of using human UC-MSCs in treating severe 
COVID-19 patients [185].

While BM- and AT-MSCs have shown similar modes of 
action and therapeutic potential, UC-MSCs have become 
more prominent as viable options for the treatment of 
lung diseases because of their superior immune regula-
tion, ease of production as “off-the-shelf” products, non-
invasive isolation techniques, quick proliferation, and 
anti-inflammatory properties [175]. However, larger-
scale phase III clinical trials using multiple MSC sources 
and therapy of pulmonary disease are necessary to pro-
vide further evidence for this hypothesis [186].

Endocrine disorders
The human body regulates its functions and maintains 
homeostasis through an intricate network of endocrine 
glands that produce and release various hormones. The 
endocrine system controls physiological processes such 
as heart rate, bone growth, reproductive function, and 
metabolism [187]. Dysregulation of the endocrine sys-
tem is a critical factor in the pathogenesis of various 
metabolic disorders, including diabetes, growth disor-
der, thyroid disease, sexual dysfunction, and reproductive 
dysfunction [188]. Utilizing adult stem cells as a template 
for organ and tissue regeneration constitutes the funda-
mental principle of regenerative medicine. Endocrine 
signals include growth factors, hormones, and cytokines, 
as well as nervous system microenvironmental stimuli 
(quick reaction), which tightly govern the actions of these 
stem cells. Using a symphony of signals, this coordinated 
and harmonized system directly controls tissue homeo-
stasis and post-injury repair. Disruption of these intricate 
networks causes an imbalance in tissue regeneration and 
homeostasis, which can result in the emergence of endo-
crine disorders in humans, including diabetes, Asherman 
syndrome, premature ovarian failure (POF), and sexual 
hormone deficiency [189].

Over the past few years, the most significant obsta-
cles in endocrinology research have been obesity and 
diabetes (specifically type 1 diabetes mellitus (T1DM) 
and type 2 diabetes mellitus (T2DM)). To address these 
issues, MSCs are being investigated as a novel thera-
peutic strategy [190]. T1DM is distinguished by the 
autoimmune disintegration of β-cells in the pancreas; 
conversely, T2DM is caused by the dysfunction of pan-
creatic insulin-producing cells and insulin resistance 
[191]. To stabilize the blood glucose levels of patients, 
regenerative medicine attempts to supply an exogenous 
cell source for the replacement of damaged or absent 
β-cells [192]. Three trials utilizing allogeneic AT-MSCs 
(NCT03920397), autologous BM-MSCs (NCT01068951), 
and allogeneic BM-MSCs (NCT0069066) have been 
completed among the numerous clinical trials utilizing 
MSCs to treat T1DM. Notably, UC-MSCs emerged as 
the preferred MSCs in the subsequent trials. Without 
any adverse events, all published studies have verified the 
safety of MSC treatments in the therapy of T1DM [193]. 
The initial trial utilizing autologous BM-MSCs demon-
strated that patients in the MSC-administration group 
exhibited elevated C-peptide levels following a mixed-
meal tolerance test (MMTT) compared to the control 
group [194]. Six months following therapy, autologous 
AT-MSCs and vitamin D administration were safe and 
resulted in improved HbA1C levels [195]. Wharton’s 
jelly MSCs (WJ-MSCs) were the primary MSCs utilized 
in treating new-onset T1DM. Results demonstrated a 
notable enhancement in C-peptide and HbA1C levels at 
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three and six months after treatment compared to the 
control group [196]. Allogeneic WJ-MSCs, when com-
bined with autologous BM-derived mononuclear cells, 
enhanced insulin production and decreased insulin 
needs in patients with T1DM [197]. Regarding T2DM, 
there are few trials utilizing MSCs for treatment, and 
their results indicate that MSCs are safe, as no severe side 
events were reported during these investigations [198]. 
MSC treatment was found to decrease HbA1C and fast-
ing blood glucose levels while increasing C-peptide lev-
els. However, these impacts were temporary, and several 
administrations were necessary to sustain the benefits of 
MSC. The autologous MSC method for treating diabetes 
patients is hindered because BM- and AT-MSCs obtained 
from diabetic patients exhibit decreased stemness and 
functional traits [199, 200]. Furthermore, there is a sig-
nificant correlation between the durations of obesity and 
diabetes and the metabolic function of autologous BM-
MSCs, in particular, mitochondrial DNA accumulation 

and respiration. These factors directly disrupt the opera-
tions of BM-MSCs and diminish the therapeutic efficacy 
of the approach [199]. With regards to AT-MSCs, the 
impairment of their therapeutic effects can be attributed 
to the detrimental impacts of T2DM, given the direct 
involvement of adipose tissue in lipid and glucose metab-
olism as well as appetite regulation [201]. Therefore, 
it is not recommended to use autologous AT-MSCs for 
treating metabolic diseases like T2DM (Fig.  4). Instead, 
employing MSCs from healthy donors in an allogeneic 
strategy is suggested as an option for stem cell therapy in 
treating diabetes patients.

Infertility
Modern society is experiencing a growing issue of infer-
tility, characterized by the failure to conceive after over 
1 year of unprotected intercourse [202]. This issue has 
become a significant global health concern and social 
burden. In vitro fertilization technology and assisted 

Fig. 4 (A) AT, which supports and regulates numerous functions, is regarded as an endocrine organ. (B) T2DM affects AT’s function in lipid and glucose 
metabolism as well as appetite regulation, rendering autologous AT-MSCs inappropriate for treating metabolic disorders. Healthy donor-derived alloge-
neic AT-MSCs may therefore represent a more viable alternative. (C) AT-MSCs are effective in treating reproductive disorders owing to their capacity to 
migrate and establish a microenvironment within the damaged ovary, enhance cell regeneration, and regulate growth hormones. (D) AT-MSCs promote 
skin healing and regeneration by supporting neovascularization, angiogenesis, anti-apoptosis, inflammation regulation, and immunoregulation. This 
figure is adapted and is freely accessible online from reference [40], Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0)
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reproductive techniques are highly effective methods 
for treating human infertility. However, their application 
is restricted due to limitations such as the inability to be 
used in patients with no sperm or those who cannot sup-
port pregnancy implantation, associated complications, 
time-consuming and costly procedures, and ethical con-
cerns in some regions [203]. Infertility can be associated 
with several diseases such as POF, endometrial dysfunc-
tion, nonobstructive azoospermia, and Asherman syn-
drome. Stem cell-based therapies have recently shown 
promise in preclinical studies for reestablishing repro-
ductive function. Recent investigations on MSCs offer 
promising prospects for individuals with reproductive 
and infertility diseases [204].

POF is defined as the loss of ovarian function in middle 
age (before 40 years old) and affects 1–2% of women dur-
ing their reproductive years [205]. Patients with POF have 
oligo/amenorrhea for a minimum of four months and 
raised levels of follicle-stimulating hormone (FSH) above 
25 IU/L on two occasions more than one month apart. 
POF has been attributed to a variety of factors, includ-
ing idiopathic and iatrogenic situations, environmental 
conditions, genetic backgrounds, and autoimmune dis-
orders. Hormone replacement therapy, psychosocial sup-
port, and fertility management can all be used to treat 
POF, although their efficacy is restricted [206]. In pre-
clinical investigations employing chemotherapy-induced 
POF animal models, MSCs derived from BM, AT, and 
UC were utilized to treat POF, resulting in enhancements 
in ovarian function. The initial POF trial, which utilized 
BM-MSCs as the primary cell source, was a single case 
report detailing the successful treatment of a perimeno-
pausal woman. The woman experienced enhanced fol-
licular regeneration, and elevated AMH levels, leading to 
a successful pregnancy, and the birth of a healthy infant 
[207]. Examination of two women with POF utilizing 
autologous BM-MSCs showed a rise in initial estro-
gen levels and the size of the treated ovaries, as well as 
improvement in menopausal symptoms [208]. A lapa-
roscopy and a BM aspiration were the two invasive clini-
cal procedures used in this early study on participants. 
Two trials were carried out using a similar technique on 
Thirty patients (aged 18–40) and ten women with POF 
(aged 26–33) [209]. A subsequent study examined two 
distinct methods of cell administration, via the ovarian 
artery and laparoscopy, although the findings have not 
been disclosed yet [209]. An autologous stem cell ovar-
ian transplantation (ASCOT) trial was initiated utilizing 
BM-derived stem cells in response to the favorable results 
observed in the mouse model. Notable advancements in 
ovarian function were documented through an ASCOT 
trial, which yielded three healthy infants, greater AFC 
and AMH levels in 81.3% of individuals, and six pregnan-
cies [210]. A randomized experiment (NCT03535480) 

was carried out on 20 patients with POF under the age 
of 39 to provide more detailed information on the find-
ings of the ASCOT trial [211]. There are currently no 
completed trials using UC- or AT-MSCs to treat POF 
patients, which makes it difficult to evaluate these MSCs 
in POF treatment. POF is an uncommon disorder that 
impacts 1% of women under 40 years old. Furthermore, 
advancements in assisted reproductive technology have 
provided patients with a variety of alternative strate-
gies to facilitate the restoration of reproductive function 
[212].

Skin burns and wound healing
Burns rank as the fourth most prevalent injury globally, 
impacting around 11 million individuals and serving as a 
significant contributor to mortality with 180,000 deaths 
reported annually. Burns are typically categorized into 
varying degrees of burns (first, second, third, and fourth) 
according to the burn location, burn depth, percentage of 
surface area burned, and patient age [213]. The efficacy 
of treatment and the extent of burn severity are deter-
minants of postburn recovery. In patients with extensive 
burns, the long-term consequences may include scar 
formation and disability, whereas the process of recov-
ery can progress from weeks to months. Burn injury, in 
contrast to mechanical injury, is an invasive development 
of tissue injury at the site of the burn, including biologi-
cal damage that causes prolonged severe inflammation 
by spontaneous apoptosis, reduced tissue perfusion, and 
oxidative stress as well as mechanical damage to the skin’s 
surface [214]. Currently, stem cell therapy offers patients 
with burn injuries an alternate treatment option since it 
is not possible to fully reverse the devastating damage 
caused by severe burns. In addition to demonstrating 
the therapy’s safety, the initial case report of BM-MSCs 
used to treat burns on 40% of the body (a 45-year-old 
patient) revealed partial improvements in wound site 
vascularization and a reduction in irregular cicatrices 
[215]. Autologous or allogeneic BM-MSCs were then 
sprayed over burn sites or added to a dermal matrix sheet 
to cover wounds in further treatments for patients with 
deep burns, second-and third-degree burns, and other 
types of burns. The outcomes of these case studies dem-
onstrated MSC-based therapy’s potential effectiveness, 
which reduced pain, increased blood flow, and sped 
up wound healing without increasing the risk of infec-
tion [216]. In 2017, a study using autologous BM-MSCs 
or UCMSCs shortened the length of hospital stay and 
increased the healing rate in 60 patients who had burned 
between 10 and 25% of their total body surface [217]. The 
invasive harvesting technique, which induces discom-
fort and potentially leads to complications in patients, 
is a limitation of BMMSCs when used to treat burns. 
Therefore, the preferred therapeutic approach is to utilize 
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allogeneic MSCs derived from healthy donors; AT- and 
UC-MSCs are two viable candidates for this purpose. To 
date, few clinical trials involving MSC therapy have been 
carried out. The design of this research presents several 
challenges, including the lack of blinding and a negative 
control group, limited sample sizes, and the applica-
tion of standardized measuring tools for burn damage 
and wound healing. AT-MSCs are now being utilized in 
seven current phase I and II studies for the treatment of 
burns. Therefore, it is critical to note that after extensive 
research, ATMSCs exhibit certain benefits in comparison 
to BM-MSCs when derived from an allogeneic source; 
however, their efficacy in the treatment of burns is yet 
to be determined. The optimal MSCs for burn tissue 
regeneration are not identified. Our observation suggests 
that AT-MSCs are more advantageous because of their 
biological properties, which promote the production 
of secretion and keratinocyte profiles that significantly 
improve skin regeneration [218, 219] (Table 1).

Current challenges for MSCs-based therapies
Transferring MSCs from the laboratory to clinical use 
has faced challenges due to inadequacies in quality con-
trol and discrepancies in several aspects such as stability, 
immunocompatibility, differentiation, heterogeneity, and 
migratory capacity observed in clinical trials [227]. The 
long-term survival of allogeneic cells following adminis-
tration is the primary obstacle for MSC-based therapies, 
especially when it comes to the treatment of specific dis-
eases. Although most MSCs are typically trapped in the 
lung and eliminated from the bloodstream, there have 

been raised concerns regarding the possible incidence of 
embolism events during infusion. These events are linked 
to innate immune responses triggered by MSCs [228]. 
The homing capacity of infused MSCs and the quantity of 
dead cells infused into patients are significant challenges 
in MSC-based therapy. The release of phosphatidylser-
ine from dead MSCs exhibited an immunomodulatory 
effect identical to that of living MSCs, according to one 
study [229]. The cell-based product always contains dead 
cells, raising concerns about their impact on the patient’s 
health.

Recent studies emphasize the critical need for stan-
dardized protocols and rigorous quality control mea-
sures in the field of MSC therapy. For instance, a study 
by Stronceket al. (2020) highlighted the variability in 
MSC potency assays across different laboratories and 
emphasized the importance of harmonizing these assays 
to ensure consistent therapeutic outcomes [230]. Fur-
thermore, initiatives such as the International Society 
for Cellular Therapy (ISCT) have developed guidelines 
to standardize the characterization and manufactur-
ing of MSCs, promoting uniformity in cell identity, 
purity, and functional properties [231]. Quality control 
in MSC-based therapies also involves rigorous screen-
ing for contaminants, genetic stability assessments, and 
validation of cell expansion protocols to maintain safety 
and efficacy. These efforts are crucial for advancing MSC 
therapies from preclinical research to robust clinical 
applications, ensuring patient safety and enhancing the 
credibility of MSC-based treatments across various ther-
apeutic indications.

MSCs present several significant processing, safety, and 
isolation difficulties. The source of the MSCs significantly 
influences the manifestation of their therapeutic charac-
teristics. Factors such as the age, sex, health status, surgi-
cal history, etc. of cell donors are crucial for the effective 
isolation of MSCs. MSC characterization presents addi-
tional difficulties. It is important to confirm that MSCs 
are functional, pure, untransformed, and therapeutically 
active after they have been isolated and selected. Micro-
biological safety and additional cell culture safety pro-
tocols must be followed during the whole process from 
isolation to therapeutic application.

Despite the promising results observed in preclini-
cal studies and initial clinical trials, MSC-based thera-
pies face several limitations and challenges that warrant 
careful consideration. One of the primary challenges is 
the variability in MSC characteristics and potency due 
to donor age, health status, and tissue source, which 
can influence therapeutic outcomes. Standardization of 
MSC isolation, expansion protocols, and characterization 
methods remains a critical issue to ensure reproducibility 
and efficacy across different studies and clinical settings. 
Moreover, the biodistribution and fate of administered 

Table 1 Summary of clinical trials evaluating MSCs therapies
Targeted 
Disease

Source of MSCs 
Used

Observed Therapeutic 
Effects

Ref.

Neurological 
Disorders

Bone Marrow, 
Adipose 
Tissue

Improved motor function, 
reduced inflammation, 
neuroprotection

[220]

Cardiovascular 
Diseases

Umbilical 
Cord, Bone 
Marrow

Enhanced cardiac function, 
angiogenesis, reduced scar 
tissue formation

[221]

Respiratory 
Dysfunctions

Adipose Tis-
sue, Umbilical 
Cord

Improved lung function, anti-
inflammatory effects, tissue 
repair

[222]

Metabolic/En-
docrine Diseases

Adipose 
Tissue, Bone 
Marrow

Enhanced insulin sensitivity, 
regulation of metabolic mark-
ers, tissue regeneration

[223]

Reproductive 
Problems

Bone Marrow, 
Umbilical 
Cord

Increased ovarian function, 
improved fertility outcomes, 
hormone regulation

[224]

Skin Burns, 
Wound Healing

Adipose 
Tissue, Bone 
Marrow

Accelerated wound healing, 
reduced scar formation, en-
hanced tissue regeneration

[225]

Orthopedic 
Conditions

Bone Marrow, 
Adipose 
Tissue

Cartilage and bone regen-
eration reduced pain and 
inflammation

[226]
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MSCs post-injection are not fully understood, rais-
ing concerns about their long-term safety and poten-
tial adverse effects, such as ectopic tissue formation or 
immunogenicity. The immunomodulatory properties of 
MSCs, while beneficial in many cases, can also pose chal-
lenges in inflammatory microenvironments where their 
effects may be unpredictable or insufficient. Additionally, 
optimizing delivery methods to enhance MSC engraft-
ment, survival, and targeted tissue localization remains a 
significant hurdle. Furthermore, the high costs associated 
with MSC isolation, expansion, and clinical-grade pro-
duction hinder the widespread adoption and affordability 
of these therapies. Addressing these challenges through 
rigorous preclinical research, well-designed clinical trials, 
and advancements in biotechnological approaches will 
be crucial for realizing the full therapeutic potential of 
MSCs in regenerative medicine.

Conclusion
MSCs have become more accessible for clinical appli-
cations in the treatment of diseases and regenera-
tion of various tissues over the past few decades due to 
advancements in culture, isolation, and differentiation 
techniques. MSCs possess several crucial attributes that 
render them favored candidates for application in regen-
erative medicine: immunomodulatory capability, which 
is advantageous in improving diseases of the immune 
system; paracrine or autocrine functions that generate 
growth factors; and the vital capacity for various cell dif-
ferentiation. Both allogeneic and autologous MSCs are 
effective sources of regenerative treatments in multiple 
clinical trials. From a molecular and cellular perspective, 
UC, AD, and BM-MSCs display distinct functional activi-
ties and therapeutic efficacy for a wide range of human 
diseases. The source of MSCs from different tissues sig-
nificantly impacts their therapeutic capabilities, as all 
forms of MSCs have similar safety profiles and efficiency. 
In conclusion, BM-MSCs exhibit potential as therapeu-
tic agents for neuronal disorders, AT-MSCs demonstrate 
suitability for endocrine disorders, infertility, and skin 
regeneration, while UC-MSCs may serve as viable alter-
natives for pulmonary diseases and ARDS. MSC-based 
therapeutic applications in CVD are still in an early stage, 
offering prospective advantages to patients. To increase 
the therapeutic effectiveness of MSCs, targeted therapies 
based on their origin are essential.
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