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Abstract 

Spinal cord injury (SCI) results in significant neural damage and inhibition of axonal regeneration due to an imbal-
anced microenvironment. Extensive evidence supports the efficacy of mesenchymal stem cell (MSC) transplantation 
as a therapeutic approach for SCI. This review aims to present an overview of MSC regulation on the imbalanced 
microenvironment following SCI, specifically focusing on inflammation, neurotrophy and axonal regeneration. The 
application, limitations and future prospects of MSC transplantation are discussed as well. Generally, a comprehensive 
perspective is provided for the clinical translation of MSC transplantation for SCI.
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Introduction
SCI is a catastrophic event that results in extensive cel-
lular death and significant damage to the central nerv-
ous system (CNS), due to primary injury and subsequent 
secondary cascades [1–3]. Given its low cure rate and 
high mortality rate, SCI imposes a substantial bur-
den on a global scale [4]. The initial mechanical trauma 
directly harms the tissue and triggers an inflammatory 

amplification. Additionally, the deficiency of neuro-
trophic factors and disruption of vascular integrity com-
promise the nutrient microenvironment. The formation 
of inhibitory scar tissue, coupled with the insufficient 
intrinsic mechanisms, ultimately hinders axonal regen-
eration, leading to failure in the recovery process [5, 6].

MSCs are pluripotent stem cells derived from multiple 
tissues with self-renew and multiple differentiation abil-
ity, serving promising candidates for cell transplantation 
therapy in many diseases, particularly in the treatment 
of SCI [7]. (i) The powerful paracrine ability comprehen-
sively improves the imbalanced microenvironment [8, 
9]. (ii) MSCs can be separated and cultured easily while 
maintain active after multiple passages [10]. (iii) Numer-
ous chemokine receptors (CXCR1, CXCR2 and CCR2 
etc.) expressed on the surface of MSCs allow them to 
target the lesion site precisely without additional modi-
fication [11]. (iv) The low immunogenicity and tumori-
genicity due to un-prominent surface antigen, makes it a 
safe choice for clinical therapy [12, 13]. Nevertheless, due 
to variations in different experimental focus, the exist-
ing literature on MSC regulation for the imbalanced 
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microenvironment following SCI lacks a comprehensive 
understanding.

This review mainly elucidates the comprehensive 
mechanism by which MSCs regulate the imbalanced 
microenvironment following SCI, especially in inflamma-
tion, neurotrophy and axonal regeneration. A summary 
of the application of MSCs is also discussed, highlighting 
its limitations and future directions.

Microenvironment imbalance after SCI
Following SCI, the destruction of neurons, glial cells and 
other cells, as well as the disruption of the surrounding 
environment, have been observed [1, 14]. Previous stud-
ies extensively examined the phases (acute, subacute, 
intermediate and chronic) following SCI and established 
an international consensus [1, 5, 15]. Therefore, a novel 

perspective on the imbalance of the microenvironment 
after SCI is aimed to be offered (Fig. 1).

Activation and cascade amplification of inflammation
In the context of SCI, inflammation assumes a piv-
otal role as the initial stress response. It functions as a 
dual-edged sword, wherein appropriate inflammation 
safeguards the tissue and hampers the propagation of 
damage. Conversely, excessive inflammation and the sub-
sequent cascade of injuries contribute to additional neu-
ronal demise and impede the regeneration of axons [5, 6].

The pattern recognition receptor (PRR) is recognized 
as the primary responder [16]. Following SCI, deceased 
cells discharge their contents, including the damage-
associated molecular pattern (DAMP), which binds to 
PRR (Toll-like receptors (TLRs), Nod-like receptors 
(NLRs) etc.) expressed on microglial cells, astrocytes 
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Fig. 1  The imbalanced microenvironment after SCI. In inflammatory microenvironment, DAMP released by dead cells binds to PRRs on microglia, 
astrocytes and neurons to activate the initial inflammatory response. Glutamate released due to massive neuronal death leads to excitotoxicity. 
Cytokines such as TNF-α, IL-1β and IL-6 secreted by microglia and astrocytes are upregulated rapidly. Chemokines attract immune cells 
to the lesion site leading to cascade amplification. In neurotrophic microenvironment. The upregulation of NF and downregulation of pro-NF 
lead to a neurotrophic imbalance. Disrupted vessels result in an insufficient energy supply, culminating in cytotoxic edema and demyelination. 
In regeneration microenvironment, the silence of intrinsic regenerative mechanism (upregulation of RhoA and PTEN) transforms the growth 
cone into a retraction bulb. The inhibitive external microenvironment, including mature scar and inhibitory molecules further impedes axonal 
regeneration
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and neurons, thereby initiating the initial inflamma-
tory response [16]. In the early stage, pro-inflammatory 
cytokines such as tumor necrosis factor-α (TNF-α), 
interleukin-6 (IL-6) and IL-1β, primarily secreted by 
astrocytes and microglia cells, experience a significant 
surge, resulting in heightened cellular demise [17–22]. 
Extensive neuronal apoptosis triggers massive release of 
glutamate, which induces excessive influx of calcium on 
neurons and glial cells called excitotoxicity, leading to 
mitochondrial dysfunction and cellular demise [23–26].

Chemokines such as CXCL-1, RANTES and MCP-1 
are increasingly expressed after SCI to attract immune 
cells from blood to the lesion site, infiltrating the broken 
blood spinal cord barrier (BSCB) [27–30]. In mice mod-
els, neutrophils reach their peak at 24  h after SCI and 
subsequently release reactive oxygen species (ROS) and 
reactive nitrogen species (RNS), which induces lipid per-
oxidation to clear cellular debris. [31, 32]. Blood-derived 
macrophage (BDM) and microglial cells reach their peak 
at 7  days [33, 34]. The pro-inflammatory cytokines and 
chemokines secreted by them not only clear debris but 
also induce axon retraction and dieback, which exac-
erbates inflammatory response [35]. T cells reach their 
peak at 14 days [36]. After SCI, the balance between pro- 
and anti-inflammatory phenotype disrupts, for cytotoxic 
T-cells (Th1 and Th17) more than 90% while regulatory 
T-cells (Th2 and Treg) less than 10% [37], leading to an 
increased release of IFN-γ, TNF-β and IL-17 [38, 39]. The 
perforin produced by CD8 T cells exacerbates secondary 
injury by disrupting the BSCB [40].

Regardless of the initial cause of inflammation or the 
subsequent cascade resulting from various aforemen-
tioned factors, it will give rise to a positive feedback loop, 
ultimately leading to an overexpression of inflammation 
and excessive tissue damage.

Damaged neurotrophic environment
The neurotrophic factor (NF) is comprised of nerve 
growth factor (NGF), brain derived neurotrophic factor 
(BDNF), neurotrophin-3 (NT-3) and neurotrophin-4/5 
(NT-4/5), binding to tropomyosin-related kinase (Trk) 
receptors and non-specific receptor p75 [41] to promote 
neuronal survival, modify glia phenotype and enhance 
axonal plasticity [42]. NF is initially synthesized as a pre-
cursor, some of which can function as distinct ligands 
by binding to the p75 receptor and sortilin to induce 
cell death [41, 42]. Following SCI, neurotrophic fac-
tor precursor (pro-NF) increases. It leads to a relative 
deficiency of NF, which disrupts the balance of the neu-
rotrophic microenvironment. This disruption in the bal-
ance between NF and pro-NF serves as the pathological 
foundation for the neurotrophic microenvironment. Pro-
BDNF increases within 1 to 3 days after SCI, which acts 

as a suppressor for macrophage migration and infiltration 
[43]. Pro-NGF induces apoptosis at nanomolar concen-
trations. It can mediate oligodendrocyte death after SCI 
and break the integrity of myelin sheath [44–46]. Several 
studies have demonstrated the efficiency of reducing pro-
NF in treatment of SCI, which provides evidence of the 
detrimental impact of pro-NF [47–49].

Another manifestation of the imbalanced neuro-
trophic microenvironment is the damaged vasculature. 
The initial injury directly impairs the blood vessels, and 
the ensuing cascade damage further injures the vascular 
endothelial cells. This results in a lack of energy supply, 
impairing ATP-dependent ion pumps on the cell mem-
brane. Consequently, the permeability of the membrane 
increases, causing an imbalance of ions across it [14]. 
Excessive intracellular sodium leads to cytotoxic edema 
and exacerbates acidosis [50], while the potassium imbal-
ance hinders the transmission of active potentials and 
leads to demyelination [51].

Inhibition of axonal regeneration
The achievement of favorable axonal regeneration con-
tinues to be of utmost importance, serving as the struc-
tural basis for functional recovery. Nevertheless, the 
inadequate activation of intrinsic mechanisms and 
the presence of inhibitory external factors pose sig-
nificant challenges in attaining the desired regenerative 
outcomes.

Insufficient intrinsic regeneration mechanisms
The cytoskeleton regulates the extension of the axon. It is 
mainly composed of actin and microtubules (MT). Dur-
ing the elongation, actin extends to form filopodia, along 
which MT extends outward to form the cytoskeleton of 
axon. However, the orderly structure is disrupted after 
SCI, forming a malnourished structure called retraction 
bulb, in which MT and actin highly overlap. This is con-
sidered as the intrinsic structure basis for the failure of 
axonal regeneration [52].

The RhoA/ROCK pathway has been extensively inves-
tigated for regulating the cytoskeleton and is commonly 
regarded detrimental for axonal regeneration [52]. After 
SCI, Rock activates LIMK1, which phosphorylates cofi-
lin at Ser-3, inhibiting its depolymerization function for 
actin [53]. Rock also phosphorylates collapsin response 
mediator protein-2 (CRMP-2), thereby impeding the 
interaction between CRMP-2 and MTs [54]. These result 
in the inhibition of MT extension and axon growth.

The PI3K-mTOR pathway plays a crucial role in regu-
lating cell growth and its inhibition after SCI leads to 
unsuccessful axonal regeneration. PTEN is an upstream 
component, which can diminish mTOR activity and 
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reduce its mRNA translation. Inhibiting PTEN while 
activating mTOR show great axonal regeneration after 
SCI [55–57].

The inadequate understanding of the intrinsic regen-
eration mechanism necessitates further investigation. 
It is emphasized for the significance of comprehending 
the intrinsic pathway accurately, rather than relying on 
imprecise adjustments. A precise understanding of the 
upstream and downstream components is essential to 
identify the pivotal element which can stimulate intrinsic 
regeneration effectively.

Inhibitive external microenvironment
Traditionally, the glial scar has been viewed as an inhibi-
tory barrier impeding axonal regeneration. However, it 
also plays a crucial role in limiting inflammation exten-
sion and preventing additional tissue damage. Given its 
dual nature and indispensable function, a comprehen-
sive analysis will be presented on cellular and molecular 
levels.

Cellular behavior  After SCI, peripheral-derived mac-
rophage (PDM) and microglia near the lesion site rapidly 
infiltrate the core through the mediation of Plexin-B2 (PB-
2) [58, 59]. PDM occupies a central position while micro-
glial cells surround it. They clear debris, limit inflamma-
tion and compact extracellular matrix [59]. However, it is 
important to note that they also secrete pro-inflammatory 
cytokines and chemokines, which can contribute to fur-
ther tissue damage.

Astrocytes transform into a reactive state character-
ized by hypertrophy and elongated processes in the first 
week after SCI, activated by neuroinflammation and 
ischemia probably through TNF-STAT3-a1ACT signal-
ing axis [60]. They are divided into A1 and A2 phenotype. 
A1 exhibits neurotoxic properties and promotes inflam-
mation while A2 possess neuroprotective qualities and 
facilitates axonal regeneration [61]. YAP pathway (bFGF-
RhoA-YAP-p27Kip1) and PI3K/AKT pathway medi-
ate astrocyte proliferation [62, 63] and Type I collagen 
triggers its maturation into a scar-forming morphology 
with thicker processes through the integrin-N-cadherin 
pathway, which creates an impermeable barrier to inhibit 
axonal regeneration [64].

It is worth noting, though, that the binary divisions of 
reactive astrocytes into A1/A2 is easily comprehensi-
ble and memorable, it is vague and cannot represent the 
complex reality [65]. Multidimensional methods should 
be used to indicate different characteristics of subtypes 
of astrocytes [66]. A comprehensive working model to 
define diverse astrocyte responses to CNS disorders has 
been proposed, including morphology, proliferation, 
molecular expression pattern through transcriptome and 

proteome, cellular functions and interactions [67]. Based 
on a comprehensive review in SCI, the reactive astro-
cytes are non-proliferative with variable degrees of cellu-
lar hypertrophy, marked by CD44, C3, Hsbp1, Vim and 
GFAP to seclude inflammatory cells at early phase. While 
scar-forming astrocytes are proliferative with thicker pro-
cesses, marked by Cdh2, Sox9, Xylt1 and Chst11 to form 
astrocytic scar [61, 68, 69]. A more accurate and detailed 
definition is needed for different subtypes of astrocytes to 
characterize their subtle and diverse functions.

NG2 cells, also referred to oligodendrocyte precur-
sor cell (OPC) has lineage plasticity to differentiate into 
oligodendrocytes, astrocytes, and Schwann cells. Nev-
ertheless, a significant proportion of NG2 cells remain 
undifferentiated and secrete chondroitin sulfate proteo-
glycan (CSPG) to form glial scar to impede axonal regen-
eration [70].

Pericytes can differentiate into fibroblasts to secrete 
collagen and fibronectin in the lesion site, constituting 
connective tissue of the scar [36, 71]. Additionally, they 
show exert vasoconstrictive effects and regulate blood 
flow [72].

In summary, a comprehensive analysis of the cellu-
lar composition of the glial scar is presented. The peri-
center of the scar is occupied by PDM with microglia 
surrounding it. Pericytes are dispersed around the micro-
glia and secrete stromal components. Astrocytes form a 
barrier and encapsulate the scar along with NG2 cells. 
The initial formation of the glial scar is believed to have 
beneficial effects by limiting neuroinflammation and 
preventing further tissue damage. However, the mature 
scar sets an insurmountable obstacle for axonal regen-
eration. It is imperative to gain a deeper understanding 
of this complex phenomenon and implement appropriate 
adjustments at different stages, such as improving tissue 
contraction and containment of damaged tissue during 
the acute phase, while inhibiting its maturation during 
the chronic phase.

Inhibitive molecule  After SCI, reactive astrocytes are 
primarily responsible for secreting CSPG, the primary 
inhibitory matrix in CNS, mainly comprising a glycosa-
minoglycan (GAG) [73, 74]. CSPG has two important 
protein tyrosine phosphatases receptors (RPTPs), pro-
tein tyrosine phosphatase σ (PTPσ) and leukocyte anti-
gen-related (LAR) subfamily in adult mammals [75–77], 
through which it inhibits axonal regeneration by RhoA/
ROCK and PKC pathway [78]. CSPG can inhibit lyso-
some and autophagosome fusion during autophagy pro-
cess, thereby impacting autophagy regulation for the 
growth cone [79]. Besides, CSPG hinders transformation 
of immune cells from a pro-inflammatory to a pro-repair 
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state via the TLR4-dependent pathway, which offers a 
novel perspective [80].

Another inhibitory molecule is myelin-associated 
inhibitors (MAI), which is a consequence of demyeli-
nation. Accumulating myelin debris after SCI, due to 
destroyed oligodendrocytes, are referred to as Nogo, 
oligodendrocyte myelin glycoprotein (OMgp) and mye-
lin-associated glycoprotein (MAG). Nogo-A is the main 
inhibitor and has a synergistic effect on MAG and OMgp 
[1, 81]. The clearance of MAI becomes challenging due 
to the significant reduction in macrophage phagocytic 
ability after SCI. This is attributed to the excessive con-
sumption of lipids, which transforms macrophages into 
a ‘foamy’ phenotype [82]. MAI share common receptors, 
NgR1 (Nogo receptor 1) and paired immunoglobulin-
like receptor B (PirB) [83], while NgR2 (Nogo receptor 
2) is specific for MAG signaling pathway [84], which can 
inhibit neuron regeneration and upregulate NG2/CSPG4 
in macrophages, diminishing its phagocytic capacity [85].

The dual effects of imbalanced microenvironment on MSC 
transplantation after SCI
The unfavorable microenvironment poses challenges for 
the viability of transplanted MSCs, making it imperative 
to enhance its survival and target rate to reduce costs. 
Simultaneously, the powerful adaptive capacity of MSCs 
makes adjustments to the microenvironment to facilitate 
tissue repair. Therefore, it is reasonable to investigate the 
objective effects of the microenvironment on MSCs.

Inflammatory microenvironment threatens the survival 
of MSCs in acute phase
Inflammation persists throughout the entire process, yet 
it is most pronounced during the initial phase. The pri-
mary inflammatory response, along with subsequent cas-
cades, undoubtedly impairs the survival and function of 
MSCs upon transplantation. Pro-inflammatory cytokines 
potentially induce cellular apoptosis. Additionally, the 
secretion of ROS and RNS by infiltrated neutrophils may 
lead to lipid peroxidation and cellular membrane dam-
age. The subsequent cascade amplifies this adverse effect.

Inflammatory microenvironment activates 
the immunomodulatory effects of MSCs in acute phase
MSCs interact with immune system actively, through 
which they adopt both anti-inflammatory and pro-
inflammatory capacity [86–88]. MSCs sensor inflamma-
tory signals to make corresponding phenotype changes to 
modulate immune cells for better tissue repair [89–91]. 
MSCs pretreated with inflammatory cytokines in  vitro, 
mimicking injury environment, show enhanced immu-
nomodulatory effect to treat CNS injury, partly due to 

the metabolic reprogramming by inflammatory cytokines 
to increase glycolysis of MSCs [92, 93].

Therefore, the double-edged role of the immune system 
is also reflected in its impact on MSCs. To mitigate the 
adverse consequences of the microenvironment while 
improve the adaptability of MSCs, employing modified 
MSCs capable of secreting anti-inflammatory factors 
could potentially serve as a viable remedy. This approach 
may confer MSCs resistance to inflammation, thereby 
enabling them to survive and assume diverse advanta-
geous functions in acute phase.

Mature scar formation and declined axonal plasticity limit 
the effectiveness of MSCs in chronic phase
The presence of a mature scar hinders the therapeutic 
efficacy of MSCs in promoting axonal regeneration, as it 
creates an impassable barrier and diminishes axonal plas-
ticity. The body naturally attempts to minimize the size of 
the scar, aiming to limit tissue destruction at the lowest 
possible expense. However, it becomes pathological basis 
to inhibit axonal regeneration.

Would scar formation help MSCs to achieve a better 
regeneration in chronic phase?
The common sense is to inhibit scar formation for its 
harmful effect discussed above. However, it is interest-
ing to find an unfavorable outcome when scar formation 
is prevented [94]. The scar-forming astrocytes support 
robust axonal regeneration through upregulating growth 
supportive molecules. It is worth exploring whether it 
plays a synergistic role with MSC in promoting nerve 
regeneration. Another advantage is the significantly 
reduced inflammation accompanied by massive neovas-
cularization in chronic phase, making a stable environ-
ment for therapeutic effect of MSCs.

In conclusion, a precise regulation is sought to achieve 
that neither hampers the restriction for further tissue 
damage in early stage nor impedes future axonal regen-
eration. This inquiry may offer a novel perspective for 
MSC-based treatments. Further investigation is required 
to fully elucidate the underlying mechanism.

Transplanted MSCs regulate the imbalanced 
microenvironment after SCI
The therapeutic effects of MSCs on SCI can be mainly 
attributed to the paracrine capacity. MSCs secrete 
cytokines and extracellular vesicles (EVs) including 
micro-vesicles and exosomes [8, 9]. These EVs contain 
numerous proteins, mRNA and micro-RNA, thereby 
influencing cell metabolism. Direct cell-to-cell commu-
nication also plays a role in the regulation. However, the 
differentiation potential of MSCs exhibits limited effi-
ciency, as the majority remain undifferentiated [95].
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Consequently, the impact and mechanism of micro-
environment regulation by MSCs, due to their paracrine 
ability and direct cell-to-cell communication, are aimed 
to be comprehensively examined to enhance the under-
standing of MSC treatment for SCI (Fig. 2).

Inflammation microenvironment
As one of the main targets, Inflammation emerges 
promptly following injury and persists over the whole 
process. The immunomodulatory function of MSCs has 
been comprehensively characterized through intricate 

interactions with immune cells, mediated either by the 
soluble secretions or direct cell communication [96]. 
The impact of MSCs on various inflammatory compo-
nents at the molecular and cellular levels after SCI is 
aimed to be elucidated.

MSCs inhibit inflammatory cell activation
Numerous cells actively engage in the initial inflamma-
tory response and subsequent cascade after SCI, as dis-
cussed above. MSCs modulate the metabolic activities 
of diverse inflammatory cells either via secretome or 
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Fig. 2  Regulation of MSCs on different imbalanced microenvironment. In inflammatory microenvironment, there is a significant infiltration 
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direct cellular communication, thereby influence their 
function within the inflammatory microenvironment.

Neutrophils  MSCs reduce infiltration of neutrophils 
to modulate inflammatory response through downregu-
lating CXCL2 in traumatic brain injury [97]. However, 
there is a lack of specific mechanistic studies related in 
SCI and CNS injury currently. Based on experiments 
in vitro and other disease models, it can be generalized 
for the dual regulation of MSCs on neutrophils. MSCs 
inhibit apoptosis of neutrophils through IL-6, IFN-β 
and granulocyte–macrophage colony-stimulating fac-
tor (GM-CSF) [87, 98, 99], which preserves its cellular 
pool, thereby facilitating the clearance of debris in early 
inflammation. Conversely, MSCs inhibit the infiltration 
of neutrophils and impedes the formation of neutro-
phil extracellular through superoxide dismutase-3 [100, 
101], thereby inhibiting the amplification of inflamma-
tion.

Hence, it is of academic interest to investigate the pre-
cise regulation mechanism of MSCs on neutrophil in 
SCI. Given the observed surge of neutrophils at 1  day 
after SCI, this endeavor will provide a novel perspective 
in understanding the early inflammatory response.

Microglia and macrophages  MSCs regulate the pheno-
type transform of microglia and macrophages from M1 to 
M2 in order to reduce inflammation after SCI [102, 103]. 
M1 (classically activated macrophage) and M2 (alterna-
tively activated macrophage) represent two terminals of 
the full spectrum of macrophage activation [104]. M1 is 
a pro-inflammation phenotype, marked by iNOS, CD80 
and CD86, with enhanced expression of TNF-α, IL-1 and 
IL-6 while M2 is characterized by anti-inflammation abil-
ity, marked by Arg1, CD206 and CD163, with increased 
secretion of IL-10 and transforming growth factor-β 
(TGF-β) [104–109].

For macrophages, IL-4 and IL-13 are critical medium 
secreted by MSCs to regulate the polarization, through 
activating JNK, JAK/STAT6 and PI3K pathway to pro-
mote M2 related genes expression after SCI [108, 110–
113]. MSCs secrete CCL5, which induces enhanced 
production of IL-4, accelerating M2 polarization [108, 
114]. In microglial cells, MSCs can activate A2bR/cAMP/
PKA pathway and counteract the downregulation of 
Zbtb16, Per3, and Hif3a genes after SCI, thereby facilitat-
ing M2 polarization [115, 116].

Astrocytes  Astrocytes induce inflammation and form 
glial scar after SCI. In this section, the MSC regulation 
of inflammation in astrocytes will be reviewed. The scar 
formation content will be discussed in the subsequent 
section. A1 astrocytes (reactive astrocytes) primarily con-

tribute to inflammation, known to be neurotoxic [117]. 
MSCs secrete tumor necrosis factor-stimulated gene-6 
(TSG-6) to decrease cyclooxygenase-2 (COX-2) and IL-6 
levels [118, 119], which downregulates NF-κB pathway to 
inhibit the formation of A1 astrocytes [120–122]. Extra-
cellular vesicles secreted by MSCs promote A2 pheno-
type transformation for SCI recovery [123]. The Jagged1/
Notch pathway in astrocytes is inhibited by MSCs which 
induces a reduction in JAK/STAT3 phosphorylation, 
thereby exhibiting a therapeutic impact [124]. The activa-
tion of astrocytes is known to be dependent on microglial 
activity. It remains to be investigated whether the regula-
tion of astrocytes is directly on itself or MSCs affect the 
crosstalk between microglia and astrocytes.

As discussed above, it is inappropriate and imprecise 
to define astrocytes in terms of binary divisions (A1, A2). 
Phenotype switch and function changes of astrocytes 
regulated by MSCs can similarly be characterized by 
multidimensional methods. More comprehensive studies 
are needed to elucidate the intricate interactions between 
MSCs and astrocytes in the future.

T cells  MSCs can inhibit and escape from T cell medi-
ated inflammation. (i) Lack of CD40, CD80, and CD86 on 
the surface of MSCs makes it hard to activate T cells [125]. 
(ii) MSCs can secrete nitric oxide (NO), indoleamine 
2,3-dioxygenase (IDO) and TGF-β to inhibit T cell pro-
liferation and activation [126, 127]. (iii) MSCs can escape 
from T cell recognition, due to the absence of major his-
tocompatibility complex II (MHC-II) and the limited 
expression of major histocompatibility complex I (MHC-
I) on the surface [125].

MSCs reduce inflammatory molecule levels
Inflammatory cytokines  Inflammatory cytokines can be 
categorized as pro-inflammatory (such as TNF-α, IL-1β, 
IFN-γ) and anti-inflammatory (such as IL-10, TNF-β). 
MSCs can increase IL-4, IL-10, IL13 and TGF-β levels 
[128–130] and decrease IL-6 and TNF-α expression [102, 
129] after transplantation. Besides, many studies also 
report the improvement of inflammatory microenviron-
ment after MSC administration, leading to functional 
recovery of SCI [124, 131].

The potential mechanism can be summarized as two 
points. MSCs can directly secrete anti-inflammatory 
cytokines and neutralizers for pro-inflammatory mol-
ecules [132]. Furthermore, MSCs can modulate the 
metabolism and polarization of inflammatory cells as 
discussed above, thereby transforming them into an anti-
inflammatory phenotype.

In conclusion, the phenomenon that inflammatory 
cytokines undergo a shift towards an anti-inflammatory 
orientation after MSCs transplantation serves as the basis 
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for the treatment of SCI. It is essential to pay attention 
to the intricate interplay between inflammatory cells and 
molecules to achieve a comprehensive understanding.

Chemokines  Chemokines recruit inflammatory cells and 
induce amplification of subsequent cascade. Chemokines 
interact with MSCs. Stromal cell-derived factor 1 (SDF-1) 
and MCP-1 are up-regulated after SCI [133–135], which 
attracts MSCs to the lesion site through CXCR4 and 
CCR2 expressed on the surface [136, 137]. MSCs secrete 
C–C motif ligand 2 (CCL2) to attract macrophages and 
induce their transformation into M2 phenotype, thereby 
protecting neurons and myelin sheaths [138].

It is interesting to identify an optimal timing for inhib-
iting the recruitment function of chemokines. This tim-
ing should neither impede the early clearance of debris 
after inflammation, nor exacerbate the tissue damage 
caused by the cascade.

ROS  The peroxide background after SCI leads to cel-
lular death and hinders the regeneration of axons, with 
ROS serving as the primary mediator of oxidative harm. 
MSCs secrete superoxide dismutase to decrease oxidative 
metabolites (3-NT, 4HNE and PC) in SCI and other neu-
rodegenerative diseases [139].

Ferroptosis is a distinct form of programmed cell death, 
which differs from apoptosis, autophagy and pyroptosis. 
It is closely associated with the peroxidation microenvi-
ronment, specifically involving lipid peroxidation of the 
cell membrane and impairment of the intracellular anti-
oxidant system [140]. The important role of ferroptosis 
in the serious consequences of secondary injury follow-
ing SCI is reviewed [141]. Neurons mainly suffer from 
ferroptosis after SCI and MSCs mediate mitochondria 
transfer to inhibit mitochondrial quality control and fer-
roptosis, which promotes neuronal survival after SCI 
[142]. Besides, the antioxidative capacity of MSCs can 
inhibit neuronal ferroptosis after SCI to attenuate neu-
ronal dysfunction through miR-5627-5p/FSP1 axis [143].

NLRP3 inflammasome  Nucleotide-binding oligomeri-
zation domain-like receptor protein 3 (NLRP3) inflam-
masome involves in the secondary inflammatory cascade 
after SCI. MSCs can impede the formation of NLRP3 
inflammasome, which decreases the pro-apoptotic pro-
tein Bax and increases the anti-apoptotic protein Bcl-2, 
showing a neurological functional recovery after SCI 
[144]. MSCs inhibit activity of caspase-1 and decrease 
levels of IL-1β, IL-18 and TNF-α, resulting in a notable 
improvement in motor function [145, 146].

Furthermore, the NLRP3 inflammasome is significant 
in pyroptosis, a form of cell death closely linked to proin-
flammatory responses, which primarily occurs in myeloid 

lineage cells, specifically professional phagocytes such as 
macrophages and neutrophils. After SCI, DAMP recruit 
pro-caspase-1 through activating apoptosis-associated 
speck-like protein containing a CARD (ASC), leading to 
formation of NLRP3 inflmmasome [147–149]. It medi-
ates pyroptosis, which triggers downstream neuroin-
flammation [150]. MSCs inhibit pyroptosis by increasing 
autophagy through PELI1 axis, which reduces inflamma-
tion after SCI [151]. Besides, this inhibition also mitigates 
tissue damage and maintains integrity of BSCB, resulting 
in functional recovery [152, 153].

Glutamate and  excitotoxicity  Inflammation-induced 
neuronal cell death results in the release of glutamate 
(Glu) and subsequent excitotoxicity. MSCs reduce the 
mRNA expression of glutamate N-methyl-D-aspartate 
(NMDA) receptor subunits and down-regulates neuronal 
sensitivity to the ligand of the NMDA receptor [154]. This 
modulation impedes the calcium influx triggered by glu-
tamate, ultimately inhibiting excitotoxicity.

Nutrient microenvironment
A stable and advantageous nutrient microenvironment 
serves a neuroprotective function by inhibiting neuron 
apoptosis and increasing neuron counts. It facilitates 
axon regrowth and extensive sprouting, resulting in 
improved functional recovery. The regulation of MSCs in 
the nutrient microenvironment can be attributed to the 
impact on the balance between NF and pro-NF and pro-
angiogenesis function.

MSCs regulate the balance between NF and pro‑NF
MSCs can secrete NF to ameliorate the imbalance. An 
increase of BDNF, NGF and glial cell-derived neuro-
trophic factor (GDNF) has been observed after trans-
plantation, which results in an increase in the area of grey 
matter and white matter and functional improvement 
[155–157]. A reduction of pro-NGF and pro-BDNF after 
administration of MSCs also accounts for neuroprotec-
tion effect [158, 159]. These results demonstrate the 
equilibrium capacity of MSCs for NF and pro-NF. How-
ever, their findings are limited to a descriptive analysis 
and lack a comprehensive investigation of the underlying 
mechanisms. Except for direct secretion, it is imperative 
to further explore whether MSCs influence the synthesis 
process of NF in other cells, secretes neutralizing antago-
nists or employs other mechanisms.

The conventional mechanism demonstrates NF binds 
to respective receptors and exerts a neuroprotective 
effect. However, it is reported that MSCs secrete BDNF 
to enhance the balance between excitation and inhi-
bition, which is achieved through the upregulation of 
g-aminobutyric acid type A receptor (GABAAR) subunits 
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β3 & γ2 and K+/Cl− cotransporter 2 (KCC2) in injured 
neurons [160]. These findings present a novel angle for 
MSC-mediated recovery in SCI and contribute to our 
understanding of the role of NF.

The present investigation into the secretion of NF by 
MSCs is overly broad. It should be asserted that a more 
precise and specific regulatory mechanism pertaining to 
a particular lineage of neurons is important. For instance, 
IGF-1 facilitates axonal growth in cortical spinal tract 
(CST) neurons [161], NT-3 induces sprouting of CST 
neurons [162] and BDNF enhances their branching and 
arborization [163], as well as promoting connections 
with spared descending interneurons [164]. Different 
NFs exhibit distinct neuroprotective priorities for CST. 
Instead of making generalizations, it is advisable to 
identify the most appropriate NF for specific stages and 
subsequently enhance its expression through MSC trans-
plantation to achieve the optimal regulation.

Pro‑angiogenesis effect of MSCs
Angiogenesis plays a crucial role in tissue regeneration 
after SCI, offering benefits of enhanced blood supply, 
metabolic regulation and cell transportation. MSCs show 
pro-angiogenic effect after transplantation for treat-
ing SCI. This phenomenon is primarily attributed to the 
MSC regulation of key genes in endothelial cell vascu-
lature. MSCs secrete hepatocyte growth factor (HGF), 
leading to increased expression of vascular endothelial 
growth factor (VEGF) and hypoxia-inducible factor-1α 
(HIF-1α) mRNA, thereby promoting angiogenesis [165].

Regeneration microenvironment
Axonal regeneration serves as the fundamental mecha-
nism for achieving functional recovery after SCI, mak-
ing it a crucial focus for therapeutic interventions. MSCs 
possess the ability to modulate the intrinsic regenera-
tive microenvironment at the molecular level, while also 
regulate the extrinsic inhibitory microenvironment at the 
cellular and tissue levels.

MSCs activate intrinsic regeneration mechanism
MSCs have the ability to restore the disrupted cytoskel-
eton and modulate the development of growth cone. Fol-
lowing transplantation of MSCs, a significant presence of 
growth cone-like structures occurs [166], which can be 
partially attributed to the regulation of RhoA/ROCK and 
PTEN/mTOR pathway discussed above.

There is a decrease of RhoA level after MSC transplan-
tation, with the most pronounced effect one week after 
SCI [167], which suggests that MSCs have the potential 
to alleviate the inhibitory effects of the RhoA/ROCK 
pathway on MT extension, thereby promoting a more 
organized MT structure that facilitates growth cone 

formation. MSCs secrete EVs containing miR-29b-3p 
targeting PTEN gene to suppress its expression [168]. 
Consequently, the inhibition exerted by PTEN on the 
mTOR pathway is relieved, resulting in the activation of 
the mTOR pathway and subsequent promotion of axonal 
growth.

In summary, MSCs inhibit retraction bulb formation 
and make an orderly growth cone by modulating RhoA/
ROCK and PTEN/mTOR pathways, thereby influenc-
ing MT assembly and extension. However, the cur-
rent research on the interaction between MSCs and 
the intrinsic pathway is insufficient and further inves-
tigation is necessary to gain a comprehensive under-
standing on the regulation of the intrinsic regeneration 
microenvironment.

MSCs improve inhibitive external microenvironment
The glial scar has been extensively investigated and 
serves as a significant evaluation of the effectiveness 
of MSC therapy. After MSC transplantation, it dem-
onstrates a reduction in cavity size and tissue loss from 
the epicenter to rostral and caudal levels, accompa-
nied by a decrease in GFAP [169], which suggests that 
MSCs inhibit the formation of glial scar. Several factors 
contribute to this phenomenon. MSCs inhibit reactive 
astrocytes, secretes BDNF and enhances Matrix metallo-
proteinases-2 (MMP-2) expression, resulting in a reduc-
tion in the expression and immunoreactivity of CSPG to 
prevent scar formation, which effectively mitigates cavity 
size [166, 170, 171].

The inhibitory effects of MSCs on glial scar formation 
on different levels are concluded. On the molecular level, 
MSCs secrete BDNF and upregulates MMP-2 expression. 
On the cellular level, MSCs exert inhibitory regulation on 
reactive astrocytes. On the tissue level, MSCs contribute 
to a reduction in cavity size and tissue loss. It is high-
lighted for the importance of investigating the impact 
of MSCs on other cellular components of the glial scar, 
such as macrophages, microglia and pericytes. Currently, 
research primarily focuses on the inflammatory aspects 
of these cells, as discussed above, rather than their role in 
scar formation and regeneration inhibition.

It is worth mentioning that even though the scar 
has already formed, MSCs have the ability to facilitate 
axonal regeneration through mechanisms known as ’cell 
bridge’ and ’cell towing’. MSCs can migrate on inhibi-
tory molecules such as CSPG or MAG/Nogo-A, acting 
as a cell bridge to facilitate the growth of dorsal root 
ganglion (DRG) across these inhibitory environments 
[172]. Additionally, MSCs can also tow the growth of 
co-located DRG. The elucidation of the mechanism 
behind MSC migration on inhibitory molecules and its 



Page 10 of 23Liu et al. Stem Cell Research & Therapy          (2024) 15:343 

role in promoting DRG growth presents an intriguing 
area of investigation. Several research have demon-
strated that the secretome by MSCs including BDNF, 
NGF, VEGF and SDF-1 can effectively enhance the out-
growth of motor neurites in the presence of glial scar 
inhibitors. It is plausible to hypothesize that MSCs 
not only serve as a physical substrate but also actively 
releases cytokines to facilitate neuronal growth in the 
inhibitory environment.

In summary, MSCs have demonstrated the ability to 
not only impede scar formation at different levels, but 
also facilitate axonal regeneration on a formed glial 
scar through paracrine effects and ‘cell bridge’. Conse-
quently, MSCs hold significant potential for the treat-
ment of SCI, particularly in the chronic phase.

The regulation of the imbalanced microenvironment 
after SCI by MSCs covers the entire period, including 
inflammatory, nutrient and regeneration microenviron-
ments. A brief overview has been provided to facilitate 
a more comprehensive understanding of the regulatory 
mechanisms of MSCs (Table 1).

Application of MSCs in SCI
Clinical trials demonstrate the effectiveness of MSCs 
in treating SCI
In addition to the numerous basic studies and animal 
experiments which proved the recovery of SCI after MSC 
administration, many clinical trials also show promising 
improvement. Most MSCs used clinically are derived 
from bone marrow or umbilical cord. The patients 
enrolled are complete or incomplete injury grade, with 
American Spinal Injury Association (ASIA) Impairment 

Table 1  Imbalanced microenvironment regulation of different sources of MSCs

Source of MSCs Mechanism of MSCs Effect Refs.

Inflammatory microenvironment

UCMSCs Zbtb16, Per3, and Hif3a genes↑ Promote M1 to M2 of microglial [115, 116]

TSG-6↑ Inhibit A1 astrocyte formation [118–122]

sTNFR1 ↑ Counteract TNF-α [132]

Inhibit NLRP3 formation IL-1β, IL-18 ↓ [145]

BMSCs Secrete EVs (NO, IDO, TGF-β) Inhibit T cell proliferation and activation [126, 127]

IL-6, IFN-1β, GM-CSF ↑ Inhibit neutrophil apoptosis [87, 98, 99]

Secrete EVs (miR-21) Transform the phenotype of astrocytes to A2 [123]

Increase autophagy through PELI1 axis Inhibit pyroptosis [151]

NMDA receptor subunit mRNA↓ Inhibit excitotoxicity of neurons [154]

BMSCs, ADMSCs Anti-inflammatory cytokines↑
Pro-inflammatory cytokines↓

IL-4, IL-10, IL13 and TGF-β ↑
IL-6 and TNF-α ↓

[102, 129]

ADMSCs Inhibiting the Jagged1/Notch pathway Reduce JAK/STAT3 phosphorylation in astrocytes [124]

3-NT, 4HNE, and PC↓ Anti-oxidation [139]

CBMSCs CCL2↑ attract macrophages, induce into M2 [138]

EFMSCs Inhibit NLRP3 formation Bax↓ Bcl-2↑ [144]

Nutrient microenvironment

UCMSCs GDNF↑ Promote tissue repair [156]

BDNF↑, upregulate β3 & γ2 and KCC2 balance excitation and inhibition in injured neurons [159]

BMSCs BDNF, NGF↑ Stimulate recovery of SCI [155]

NGF↑ increase the area of grey matter and white matter [157]

pro-NGF↓ Improve nutrient microenvironment [158]

AFMSCs HGF↑ VEGF and HIF-1α↑, promote angiogenesis [165]

Regeneration microenvironment

UCMSCs Secrete miR-29b-3p PTEN↓, promote axon growth [168]

Inhibit reactive astrocytes Inhibit scar formation [166]

MMP-2↑ CSPG↓, inhibit scar formation [170]

UCMSCs, ADMSCs GFAP↓ Decrease cavity size and tissue loss [169]

BMSCs ‘Cell bridge’ and ’cell towing’ Facilitate neuronal growth [172]

CMSCs RhoA↓ Promote growth cone formation [167]

UCBMSCs BDNF↑ CSPG↓, mitigate cavity formation [171]
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Scale scoring from A-C. After treatment for different 
periods, there are varying degrees of improvement in 
sensation function, motor function, electrophysiology, 
imaging and urodynamics [173–180]. Table  2 summa-
rizes some clinical trials of MSC therapy for SCI, includ-
ing cell type, dose, transplantation route, therapeutic 
phase and treatment effect. Taken together, MSCs bring 
functional recovery, which show promising prospect 
(Table 2).

However, the recovery in clinical trials is far less signifi-
cant and effective than that in preclinical experiments. 
This can be attributed to different designs between pre-
clinical and clinical trials. A good paradigm for discuss-
ing this issue is proposed [181]. Based on this, a brief 
overview is provided to illustrate the design differences 
(Table  3). For the disease model, species differences 
should be prioritized, emphasizing the need to select 
more representative animals, such as non-human pri-
mates. Animal models are typically young and healthy, 
exhibiting homogeneity degrees of injury, whereas actual 
patients often present with comorbidities and varying 
injury severities. Individual differences should also be 
considered. For transplanted MSCs, immunogenicity and 
source should be considered substantially. Besides, the 
preservation, dose and time of transplantation are also 
critical. For evaluation metrics, preclinical experiments 
typically observe effects over a short period. Conversely, 
clinical trials require long-term follow-up to comprehen-
sively evaluate efficacy and safety. Differences in evalu-
ation methods and ethical considerations further limit 
clinical translation.

The optimal transplantation strategy of MSCs
Timing
The effectiveness of different transplantation time points 
of MSCs has been assessed through experimental models 
and clinical trials. In experimental models, the subacute 
phase (2 weeks after SCI) is often considered the optimal 
choice [182, 183]. Because the intense inflammation and 
a detrimental environment in the acute phase hinders 
MSC survival and the formation of a mature scar in the 
chronic phase limits the efficacy [184–187]. Meta-anal-
ysis related proves subacute phase as the most effective 
time window in preclinical experiments [183, 188]. How-
ever, clinical trials have not yet determined an optimal 
time point. Due to practical considerations, most patients 
included in the trials are in the subacute or chronic phase 
as discussed above. Therefore, more comprehensive 
research should be conducted in the future to determine 
the optimal time window for transplantation.

Dose
The therapeutic effect of MSC transplantation for 
SCI is dose-dependent. In rodent animals, high dose 
(> 1 × 106) reports better functional recovery than low 
dose (< 1 × 106) in umbilical cord derived mesenchymal 
stem cells (UCMSCs) and adipose derived mesenchymal 
stem cells (ADMSCs) [182, 183]. However, an over-dose 
transplantation may trigger inflammation, which harms 
repair effect [189]. Consequently, 106 is utilized as an 
effective dose in most rodent models [190]. In large ani-
mal models, canines and pigs are administrated a dose 
of 107 [139, 191, 192]. There is currently no research on 
MSC transplantation for SCI therapy in non-human pri-
mates. However, one study involving the transplantation 
of MSC-derived neurons into rhesus monkeys, with a 
dosage of 2.5 × 106, can be referenced for further research 
[193]. In humans, there are no systematic clinical trials 
comparing the optimal transplantation dose. Currently, 
the dose range is 107–108 [174, 175, 177, 179, 180, 188]. 
A more precise criterion is 1.2 × 106/kg or 5 × 106/cm3 
(per lesion volume which was performed by MRI analy-
sis) [176, 178] The allometric dose translation approach 
should be investigated in the future to advance clinical 
translation.

Route
Despite being a non-invasive method, intravenous injec-
tion lacks specificity, with the majority of the cells pre-
dominantly accumulating in the lungs, spleen and 
kidneys [194], showing inferior efficacy compared to 
local transplantation [182, 183]. in  situ injection has 
been documented as a direct means to target the lesion 
site. However, it may potentially cause secondary dam-
age. Given the practical circumstances in clinical settings, 
intrathecal injection is considered as a relatively safe and 
valid method because it makes MSCs circulate in CSF to 
target lesion site [195].

Notably, the powerful homing and migration capabili-
ties of MSCs have been systematically documented. After 
entering into blood flow, MSCs extravasate at the injury 
site crossing endothelial barrier through ‘leukocyte-
like process’, finally targeting lesion site precisely [196]. 
SDF-1/CXCR4 plays a crucial role in recruiting MSCs in 
SCI [197]. However, due to massive capture of MSCs by 
lungs, spleen and kidneys when administrated through 
intravenous injection, strategies to improve homing 
capacity require urgent development. For instance, Integ-
rin α4 overexpression enhances trans-endothelial migra-
tion of MSCs [198]. This is highly promising. It may 
promote intravenous injection as a superior administra-
tion route in the future, which is a non-invasive trans-
plantation method to completely eliminate the risk of 
secondary injury to the spinal cord.
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Source
Bone marrow (BM), umbilical cord (UC) and adipose tis-
sue (AT) are three main sources utilized in experiments 
and clinical trials [199]. In spite of different characters, 
they all show effective therapy in different phases of SCI. 
As pluripotent stem cells, bone marrow derived mesen-
chymal stem cells (BMSCs) can differentiate into neu-
rons and glial cells [200, 201]. However, the therapeutic 
effect mainly relies on the paracrine and transdifferen-
tiation capacity, which can reduce inflammation, recover 
BSCB integrity, secrete neurotrophic factor and promote 
axonal regeneration [201–204]. UCMSCs can be eas-
ily obtained in a non-invasive manner. Besides, the low 
immunogenicity and rapid proliferation capacity make it 
a safer and more economical candidate [205]. They can 
inhibit reactive astrocytes activity, neuron apoptosis and 
scar formation [166, 171, 206]. ADMSCs contain more 
somatic stem cells with higher proliferation activity [207, 
208]. They may activate angiogenesis more significantly 
due to enhanced expression of IGF-1, IL-8 and VEGF-D 
[209].

Immunogenicity
The low immunogenicity of MSCs minimizes the risk 
of immune rejection. However, it is still a nonnegligi-
ble issue to be discussed in the future clinical transfor-
mation. Autologous MSCs are isolated from self-body, 
expanded in  vitro and then administrated back to self. 

It is considered the safest without the risk of immune 
rejection, which is widely used in clinical trials [176–
180]. Although allogeneic MSC are not derived from the 
patients themselves, they achieve immune escape due to 
lack of CD40, CD80, CD86 and low expression of MHC 
complex as well as ability to inhibit T cell activation 
[125–127, 205]. UCMSCs are classical examples utilized 
clinically, which show effective restoration [173–175]. 
Xenogeneic MSC transplantation is limited to animal 
experiments with effective functional recovery while it 
is rare clinically because of species difference [210, 211]. 
It is promising if applied clinically because it holds the 
potential to solve the problem of insufficient clinical 
donors, provided it is ethical.

Survival
The adverse environment following SCI reduces the 
survival rate of transplanted MSCs, thereby limiting 
the effectiveness. Despite the presence of MSCs being 
detectable 6–8 weeks post-transplantation, their survival 
rate is less than 1% after 8  weeks [212, 213]. There are 
two methods to improve the survival rate and quantity of 
transplanted MSCs, including preconditioning of MSCs 
to enhance survival capacity (such as chemical factors or 
hypoxia) and administering multiple injections at differ-
ent time points [214–217].

In conclusion, developing the optimal transplantation 
strategy to construct a comprehensive transplantation 
system is a complex yet essential task, particularly for 
future clinical translation. Critical factors including tim-
ing, dose, route, sources, immunogenicity and cell sur-
vival have been summarized, aiming to provide insightful 
directions for subsequent research.

Exosomes derived from MSCs show promising effects
Due to certain constraints associated with MSCs, 
exosomes have emerged as an alternative therapeutic 
option, which is attributed to their distinct advantages, 
such as the absence of ethical concerns, the ability to 
evade capture by the liver and lungs and smaller size that 
facilitates easier infiltration of the BSCB [218].

Exosomes demonstrate similar effects to MSCs by 
means of their secretory activity, which can be summa-
rized as anti-inflammatory, regulation of macrophage 
polarization, reduction of A1 astrocytes and protection 
of BSCB integrity [219]. Exosomes derived from hUCM-
SCs can induce a phenotype switch toward anti-inflam-
mation of macrophage and decrease the levels of TNF-α, 
MIP-1α, IL-6 and IFN-γ [119].

Moreover, exosomes have the ability to modulate signal 
pathways via miRNA. Currently, miRNA-21, miRNA-133 
and miRNA-126 have been identified as potential targets. 
These miRNAs specifically target crucial genes which are 

Table 3  Design differences between preclinical experiments 
and clinical trials

Preclinical 
experiments

Clinical trials

Disease model

Species Rodents Human

Degree of injury Relative homogeneity Varying degree of sever-
ity

Comorbidity Healthy Different degree

Individual differences 
(age, gender…)

Relative homogeneity Considerable variability

MSCs

Immunogenicity Allogeneic & xenoge-
neic

Autologous & allogeneic

Source Various sources BM, UC, AT

Preservation Cryopreserved Fresh

Transplantation dose Relatively small 
quantity

Large quantity

Time window Mainly subacute Mainly chronic

Evaluation Metrics

Fllow-up duration Short-term Long-term

Evaluation method BMS, BBB ASIA, Imaging

Ethics Less consideration Thorough consideration



Page 14 of 23Liu et al. Stem Cell Research & Therapy          (2024) 15:343 

involved in the process of injury repair. Exosome-derived 
miRNA-21 targets PTEN, thereby facilitating functional 
recovery [220]. miRNA-133b suppresses RhoA, leading 
to the activation of PI3K/AKT and MEK/ERK pathways, 
ultimately promoting regeneration [221]. In addition to 
inhibitory function, miRNA-133b promotes the phos-
phorylation of CREB and STAT3, which is associated 
with axonal regeneration [221].

However, there remain certain limitations that require 
resolution. It is imperative to attain the standardiza-
tion in the isolation method, purification technology 
and source of MSCs for exosomes. Additionally, further 
investigation is necessary to discern harmful components 
in exosomes.

Modification of MSCs to enhance effectiveness
Different imbalanced microenvironments emphasize dif-
ferent therapeutic priorities. The modification of MSCs 
in  vitro can potentially alter the properties. Therefore, 
it is advantageous to enhance the performance of MSCs 
through modification to adapt to various environment. In 
general, there are two approaches called preconditioning 
and genetic modifications [222].

Preconditioning
Preconditioning can be achieved through hypoxia, 
cytokines and physical factors. Hypoxia preconditioning 
has been shown to enhance the proliferation and migra-
tion of MSCs [223]. Additionally, the expression of pro-
survival signals and trophic factors is increased after 
hypoxia/reoxygenation [224]. Cytokine preconditioning 
has also demonstrated beneficial effects, as evidenced 
by the upregulation of VEGF and activation of the pro-
growth pathways AKT and ERK in MSCs treated with 
SDF-1 [225]. Additionally, physical factors and materials 
also show favorable effect. Pretreatment with pulsed elec-
tromagnetic fields (PEMF) can effectively enhance the 
AKT and RAS signaling pathways, thereby inhibiting the 
apoptosis of MSCs [226].

Different primed conditions show various effect. The 
optimal and suitable preconditioning method should 
be identified for different microenvironments. Particu-
larly, whether preconditioning is harmful remains to be 
explored.

Genetic modification
MSCs can undergo genetic modification through trophic 
factors, cytokines and anti-apoptosis factors. MSCs 
genetically modified by NT-3 develop larger spare mye-
lin sheaths and reduce the capsular area, which leads 
to significant improvement in motor function after SCI 

[227]. Similarly, BDNF, GDNF and NGF have also been 
employed, yielding notable effects [228].

Genetic modification presents a promising approach 
for regulating the properties of MSCs at different stages 
following injury. The selection of an appropriate gene for 
specific modifications of MSCs is crucial to enable their 
adaptation to diverse microenvironments. Addition-
ally, understanding the intricate interplay between genes 
and achieving multi-gene modifications is of utmost 
importance.

Biomaterials and scaffold combination with MSCs
The direct administration of MSCs yields a diminished 
rate of cell survival and the migration of MSCs results in 
a reduced targeting efficiency. The utilization of degrada-
ble biomaterials can facilitate the retention of MSCs at 
the site of injury, ensure a sustained supply of nutrients 
and offer a structural substrate for axonal regeneration.

Currently, four primary materials, including collagen, 
fibrin, chitosan and poly lactic-co-glycolic acid (PLGA), 
are predominantly utilized. Each material possesses 
distinct characteristics [229]. After transplantation of 
MSC-scaffold, there is an increase in neurofilaments 200 
(NF-200) and CD31 as well as a decrease in CD11b, indi-
cating a reduction in inflammation, ultimately promoting 
angiogenesis, axonal regeneration and motor ability res-
toration of SCI [229, 230].

In addition to experimental evidence, clinical trials 
have also demonstrated potential value. In the clinical 
trial NCT02352077, Zhao et  al. conducted a transplan-
tation of hUCMSC-biodegradable collagen scaffolds to 
patients with SCI in the chronic phase, which improves 
the level of sensation, increases MEP reactive area 
and enhances trunk stability [188]. In the clinical trial 
NCT02510365, Xiao et al. observed a gradual recovery of 
electrical conduction and walking ability after transplan-
tation in the acute phase [175].

Immunotherapy benefits MSC transplantation
Immunotherapy on SCI modulates innate and adaptive 
immune responses, which improves the intense inflam-
mation after SCI [231]. Methylprednisolone (MP) is con-
sidered as a significant innate immune suppressant with 
anti-inflammatory and neuroprotective effects [232]. It 
exerts neuroprotective function by mitigating oligoden-
drocyte apoptosis induced neuron death through the 
inhibition of lipid peroxidation. It is also demonstrated 
of the enhancement of motor scores after administration 
of MP in clinical trials [233]. Human immunoglobulin 
G (hIgG) serves as a regulator of the adaptive immune 
response, which promotes the integrity of the BSCB by 
downregulating inflammatory enzymes and upregulating 
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the expression of tight junction proteins, thereby reduc-
ing the infiltration of immune cells. It induces neutrophils 
to migrate into the spleen by increasing chemoattractant 
there, leading to a reduction in the inflammatory cascade 
in the spinal cord [234, 235].

There is little research on the combination of MSCs 
and immunotherapy. The inflammatory response fol-
lowing SCI poses a significant threat to the survival of 
MSCs, particularly during the early stages. Employing 
immunotherapy to suppress the inflammatory response 
at the lesion site can create a conducive environment 
for MSCs. Nevertheless, prior to implementation, it is 
imperative to assess the influence of MP on MSCs and 
the safety of immunotherapy to avert potential systemic 
complications.

Technologies for tracking transplanted MSC
In preclinical experiments, MSCs labeled with human 
nuclear antigen or green fluorescent protein (GFP) can 
be tracked through immunofluorescence imaging at cel-
lular level [124, 236],while transfection with luciferase 
followed by in  vivo imaging system (IVIS) allows imag-
ing MSCs at the macroscopic level [237]. However, they 
are not suitable for clinical transformation for inaccu-
racy, lack of real-time capability as well as safety concern. 
Some research has already been conducted to identify 
suitable imaging tools to facilitate the clinical translation 
of MSC transplantation. Magnetic resonance imaging 
(MRI) is a non-invasive imaging modality with precise 
surveillance of MSCs labeled by exogenous contrast 
agents such as iron-oxide nanoparticles and gadolinium 
diethylenetriamine pentaacetic acid (Gd-DTPA), which 
shows safe and effective outcomes [238–240]. Besides, a 
combined ultrasound (US) and photoacoustic (PA) imag-
ing technology is developed with capability for accurate 
guidance and quantitative imaging, which enables real-
time tracking of MSCs and provides precise navigation 
for the safety of clinical MSC transplantation [241, 242].

A schematic diagram of MSC applications is provided 
to summarize the current common approaches (Fig.  3). 
In addition to the aforementioned methods, functional 
electrical stimulation (FES) holds promise as a rehabili-
tation training technique due to its effectiveness. The 
intricate pathological process of microenvironment 
imbalance following SCI involves multiple phases, tar-
gets and pathways. Merely focusing on a singular aspect 
is inadequate for comprehensive clinical rehabilitation. 
Consequently, a multiple-target and multiple-discipli-
nary treatment (MDT), such as combining MSC trans-
plantation with other approaches is suggested.

Limitation and future direction
Although MSC transplantation therapy has a relatively 
robust experimental foundation and some clinical evi-
dence, there exist several limitations. The majority of 
current animal models employed in studies are rodents, 
which may not precisely reflect the pathological progres-
sion following SCI in humans. Consequently, the direct 
application of these findings to humans lacks accuracy, 
necessitating the inclusion of large animal models, espe-
cially non-human primate for further investigation, like 
in stroke research [243]. In terms of anatomical struc-
ture, their spinal cord closely resembles that of humans. 
Regarding effectiveness of SCI modeling, the post-injury 
periods and microenvironment changes they undergo 
are more analogous to those observed in humans. For 
evaluation metrics, evaluation criteria and identical 
imaging techniques in clinical trials can be employed. 
Additionally, inadequate translational studies and clini-
cal trials impede the advancement and widespread 
implementation of this therapy. Furthermore, the ethical 
boundaries and risk assessment pertaining to this mat-
ter remain unresolved, especially for antigenicity and 
tumorigenicity.

In future research, it is imperative to conduct further 
investigation into the paracrine function and accurate 
underlying mechanism of MSCs. The specific and pre-
cise regulation will be the most efficient and economical 
approach. In order to facilitate the clinical application of 
MSCs, it is necessary to link preclinical experiment with 
clinical trials. More clinical trials are also warranted for 
risk assessment and to determine the optimal transplan-
tation strategy. Additionally, the standardization and 
commercialization of MSCs are crucial for achieving 
large-scale production and widespread availability.

Conclusions
SCI results in significant neural impairment, imposing a 
substantial burden on both the patient and society. The 
initial mechanical trauma directly causes tissue destruc-
tion and triggers subsequent inflammatory cascades. The 
disrupted balance between NF and pro-NF, along with 
damaged vasculature contributes to an unfavorable nutri-
ent microenvironment. The inhibitory glial scar forma-
tion and insufficient intrinsic mechanisms hinder axonal 
regeneration. As a promising therapeutic approach, 
MSCs modulate the imbalanced microenvironment 
through its paracrine abilities and direct cellular commu-
nication. The administration of MSCs has been shown to 
mitigate inflammation, restore the nutrient balance and 
improve the inhibitory microenvironment, ultimately 
resulting in the regeneration of axons and the recovery 
of neurological function. Clinical trials and the optimal 
transplantation strategy are discussed. Various forms of 
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MSC application, such as exosomes, modification and 
combination with biomaterials, have been explored. At 
present, it is crucial to acquire a comprehensive and thor-
ough comprehension of MSC regulation on the imbal-
anced microenvironment following SCI. Further research 
that is more specific is warranted to propel us towards an 
era of enhanced precision and targeted regulation.
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