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Abstract
Background Wound healing represents a complex biological process, critically important in clinical practice due to 
its direct implication in a patient’s recovery and quality of life. Conservative wound management frequently falls short 
in providing an ideal environment for the optimal tissue regeneration, often resulting in extended healing periods 
and elevated risk of infection and other complications. The emerging biomaterials, particularly hydrogels, have shown 
substantial promise in addressing these challenges by offering properties such as biocompatibility, biodegradability, 
and the ability to cure wound environment. Recent advancements have highlighted the therapeutic potential of 
integrating cell-derived conditioned medium (CM) into hydrogel matrices. Cell-derived CM represents a rich array of 
bioactive molecules, demonstrating significant efficacy in modulating cellular activities crucial for wound healing, 
including cellular proliferation, migration, and angiogenesis.

Methods The methodology of this review adheres to the standards set by the Preferred Reporting Items for 
Systematic Review and Meta-Analysis (PRISMA) guidelines. The review includes a selection of studies published 
within the last five years, focusing on in vivo experiments involving various types of skin injuries treated with topically 
applied hydrogels loaded with CM (H-CM). The search strategy refers to the PICO framework and includes the 
assessment of study quality by CAMARADES tool.

Results The systematic review represents a detailed evaluation of H-CM dressings wound healing efficiency based 
on the experimental results of cell-based assays and animal wound models. The study targets to reveal wound healing 
capacity of H-CM dressings, and provides a comparative data analysis, limitations of methods and discussions of H-CM 
role in advancing the wound healing therapy.

Conclusions The data presented demonstrate that H-CM is a promising material for advanced wound healing and 
regenerative medicine. These dressings possess proved in vitro/in vivo efficacy that highlights their strong clinical 
potential and paves the way to further investigations of H-CM formulations within clinical trials.
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Background
Wound healing is one of the most pressing challenges in 
modern regenerative medicine and tissue engineering 
due to its complexity and a high risk of chronification, 
especially when associated with diabetes [1–3]. The main 
stages of wound repair are hemostasis, inflammation, 
proliferation, and remodeling that are actively accom-
panied by immune events [4–8]. To provide the tissue 
repair and regeneration along with standard therapeutic 
strategies, novel biomaterials affecting biochemical, cel-
lular and immunological processes have been recently 
introduced. These include self-pumping Janus-like dress-
ings [9], microneedles [10], nanofibers [11], electrospun 
membranes [12, 13], and scaffolds [14, 15].

Hydrogels have emerged as effective materials for 
wound management and treatment enhancing tissue 
regeneration due to the composition of the hydrogel 
network [16]. The ability of the 3D-hydrogel network to 
retain moisture, its responsiveness to physical or chemi-
cal stimuli such as pH [17], temperature or light [18, 19], 
biocompatibility and biodegradability [20–22], oxygen-
permeability [23, 24], bioadhesion [25, 26] ensure the 
delivery and controlled release of encapsulated active 
components in the target area. The active components 
may consist of antibiotic or anti-inflammatory drugs 
[27–29], nanoparticles [30, 31], therapeutic proteins, or 
nucleic acids [32–36]. Hydrogel-based dressings were 
demonstrated to modulate the macrophage response and 
polarization, thus enhancing angiogenesis in diabetic 
wounds [37, 38]. To facilitate immunostimulation and 
to induce cell proliferation, vascular endothelial or basic 
fibroblast growth factors were encapsulated into a hydro-
gel matrix [39, 40].

However, faster and more effective wound healing is 
expected in the case of a treatment based on cell sec-
retome products rather than on single growth factors. 
This is related to the complexity of the wound microen-
vironment and biochemical cascades involved in tissue 
regeneration. Cell-derived conditioned medium (CM) 
represents a cell secretome containing extracellular ves-
icles and a large panel of biomolecules including mRNAs, 
active lipids, growth factors, growth-factor-binding pro-
teins, cytokines, chemokines, and other biomolecules 
that enhance cell proliferation, migration, and angiogene-
sis [41–43]. It makes CM a cell-free alternative therapeu-
tic comparing to the already existing mesenchymal stem 
cell-based wound treatments [44]. Hydrogels are ideal 
matrices preserving the structure and function of bio-
molecules, suitable for encapsulation of hydrophilic bio-
molecules such as proteins and nucleic acids. Tuning the 

hydrogel’s mesh size, it is possible to control its mechani-
cal strength and release rate of entrapped molecules. 
Thus, loading of a hydrogel matrix with CM represents 
a synergetic approach to promoting tissue regeneration, 
with the creation of a depot. The latter ensures prolonged 
release of CM components that finally improves the com-
pliance of the wound treatment and management [45]. 
In this systematic review, we aim to analyze the wound 
healing efficiency of hydrogels loaded with CM (H-CM) 
engineered to be used as dressings (Fig. 1). Here, we tar-
get the design, approaches exploited for H-CM fabrica-
tion and in vitro/in vivo functionality assessment of such 
systems to reveal their wound healing capacity. We also 
consider the advantages and limitations of the designed 
methods, analyze the opportunities to use H-CM formu-
lations as effective wound dressings, and discuss a pos-
sibility of further clinical studies of the resultant product.

Methods
The systematic review was conducted according to the 
guidelines of the Preferred Reporting Items for System-
atic Review and Meta-Analysis (PRISMA) [46, 47]. The 
search was conducted via the PubMed and Scopus data-
bases using the PICO process and involved the study 
quality assessment by the Collaborative Approach to 
Meta-Analysis and Review of Animal Data from Experi-
mental Studies (CAMARADES). The systematic review 
was not pre-registered.

Research question
Is wound contraction in animal models due to the appli-
cation of H-CM dressings more effective than treating 
wounds with CM or hydrogels alone?

Search strategy
The literature search was performed by the Boolean 
Operator using the “AND/OR” system and included all 
articles published within the last 5 years before March 
2024. The following search query was used to collect rel-
evant articles: (“conditioned” AND “medium” OR “secre-
tome”) AND (“hydrogel” OR “patch” OR “dressing”) AND 
(“wound” OR “healing” OR “burn”).

Study selection
Two reviewers (S.S. & G.N.) independently screened the 
titles and abstracts for all relevant studies to eliminate 
duplicates and select articles by eligibility criteria.

Keywords Wound healing, Tissue regeneration, Dressings, Hydrogels, Crosslinking, Cell-conditioned medium, 
Proteome, Cell secretome, Animal models, In vitro/in vivo studies
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Eligibility criteria
The identified articles were selected using the inclusion 
and exclusion criteria. The inclusion criteria included 
the following limitations: (1) stem cells secretome (non-
cellular components); (2) hydrogel; (3) in vivo experi-
ments (preclinical and/or clinical trials); (4) skin damage 
(wounds, burns, ulcers, etc.); (5) topical application; (6) 
English language; (7) 2019–2024 years of publishing. The 
exclusion criteria were as follows: (1) reviews, editorials, 
letters, books, conference papers and abstracts; (2) dupli-
cates; (3) insufficient data. After selecting the appropriate 
studies based on the inclusion and exclusion criteria, a 
final list of articles was analyzed in a qualitative manner.

To assure the quality of the selection process the PICO 
elements were exploited. In this review, the types of par-
ticipants included all animal varieties/types irrespective 
of the species, sex and age. Furthermore, the included 
studies must have used full-thickness skin defect models 
(wounds and burns). The interventions analyzed repre-
sented studies that used a hydrogel matrix with the stem 
cell secretome as a wound dressing. These were the pri-
mary criteria for studies to be included. Studies with no 
hydrogel matrix or no stem cell secretome were excluded. 
As types of control studies with a blank control, those 
on the wound treatment without a hydrogel matrix and/
or secretome as the control were selected to the review. 
Studies that analyzed the wound contraction efficiency as 

a wound size difference before and after treatment were 
included to analyze a pre-defined outcome. Thus, the 
effectiveness and the wound healing rate of the H-CM-
based dressings, compared to hydrogel dressings without 
CM were evaluated.

Risk of bias and study quality assessment
The assessment of quality for the included studies 
was performed using the CAMARADES checklist as 
described elsewhere [48–50]. The evaluation included the 
following 10 criteria: (1) wound size calculation; (2) ran-
dom allocation to treatment or control; (3) appropriate 
control; (4) blinded assessment of outcome; (5) appropri-
ate animal defect model; (6) use of anesthetic on animal 
model where necessary throughout the study; (7) state-
ment of control of temperature; (8) compliance with ani-
mal welfare regulations; (9) peer-reviewed publication; 
(10) statement of no potential conflict of interests. Each 
“yes” of the following criteria was given a score = 1, while 
“no” or “unclear” carried a score = 0. Based on the total 
score of 10, studies with a score of 0–3 were recognized 
as high risk studies, those with 4–6 as medium risk stud-
ies, and those with 7–10 as studies with a low risk of bias.

The assessment of the bias risk of the included stud-
ies was performed using the Robvis tool [51]. The fol-
lowing biases were considered in this evaluation tools: 
selection bias (random sequence generation, allocation 

Fig. 1 The key stages of fabrication and preclinical studies of hydrogel-based dressings loaded with cell-conditioned medium intended for wound heal-
ing applications
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concealment), detection bias (blinding of participants 
and outcome assessment), attrition bias (incomplete out-
come data), reporting bias (selective outcome reporting), 
and a bias from other sources.

Data extraction and analysis
The author and year, hydrogel compounds, source of 
cells, type of skin damage (full-thickness wound, diabetic 
ulcer, burn), animal model species (mice, rat, sheep), out-
comes relevant to wound healing or scar improvement 
were extracted independently by S.S. and G.N. using a 
standardized tabular form. The data collection for the 
descriptive analysis was arranged by using Microsoft 
Excel 2021 (Microsoft Office, Microsoft Corporation, 
Redmond, WA, USA) and the Origin Pro version 2018 
software (OriginLab Corporation, Northampton, MA, 
USA). Any difficulties and disagreements encountered 
during the analysis were resolved by consulting the third 
author (A.S.).

Results
Study selection and study characteristics
The initial search results included 163 articles: 78 from 
PubMed and 85 from Scopus. After the removal of 59 
duplicates, a total of 104 articles were brought to the 
screening stage to exclude those that did not meet the 
eligibility criteria. During the further stage of screening 
the title and abstract, 52 articles were excluded from the 
study, since they did not satisfy the inclusion criteria. The 
remaining 52 articles were subjected to a full-text analy-
sis for the eligibility criteria. As a result of the analysis, 
31 articles were found to be ineligible, in particular, 21 
of them contained information only on in vitro studies, 
2 articles contained only ex vivo experiments, 7 articles 
did not use a hydrogel matrix, 14 did not use condi-
tioned stem cell medium, and 8 were review articles. 
Some of the articles contained a combination of the listed 

ineligibility criteria. Finally, 21 studies were selected for 
the review. The process of searching and screening the 
articles is summarized in Fig. 2.

Further, the articles were categorized for a better 
understanding of the design and approaches exploited for 
the fabrication and assessment of regenerating potency 
of H-CM formulations, involving animal models, and 
specific wound treatment protocols. Most of the stud-
ies represent proof-of-the-concept or concept validation 
research and describe the hydrogel preparation, CM pro-
duction and identification of its active components, as 
well as characterization of the prepared H-CM dressings 
in vitro and in vivo (Table S1, Supporting Information).

Risk of bias and study quality assessment
According to the result of the CAMARADES quality 
tool (Table S2, Supporting Information), 19 studies out 
of 21 (90%) used wound size calculation while assessing 
the healing efficiency. 8 studies (38%) reported random-
ization of the experimental and control group alloca-
tion. Only 2 included studies (9%) reported the blinded 
assessment of outcomes. All studies were published in 
peer-reviewed journals, used appropriate animal models 
and controls, anesthetized where necessary throughout 
the study, and stated compliance with the animal welfare 
regulations. In conclusion, 90% of studies were scored as 
low risk and 9% were at a medium risk of bias.

According to the Risk of bias (Robvis) tool (Figure S1, 
Supporting Information), 8 of the 21 studies divided ani-
mals into the control and experimental groups randomly 
and were therefore judged to have a low risk of selection 
bias. However, none of the articles mentioned that the 
studies were conducted by assigning, concealing, blind-
ing investigators (unclear risk of bias). Only 2 studies 
reported blinding of the outcome assessment (low risk 
of bias). All studies were free from missing data, selective 
reporting bias, or other biases (low risk of bias). Hence, 
the quality of the included studies was reliable and 
acceptable.

Preparing hydrogels loaded with conditioned medium
Hydrogel engineering
The natural and synthetic biocompatible and biodegrad-
able polymers are widely used for hydrogel preparation. 
During the last five years the classical hydrogel-forming 
components have been gradually replaced by novel syn-
thetic substances and unusual products of natural origin 
allowing designing various hydrogel-based delivery sys-
tems to be used as wound dressings (Fig. 3).

In detail, 70% of reviewed studies used mainly natu-
ral biopolymers or their chemically modified derivatives 
such as alginate − 33% [52–58], chitosan − 19% [59], gel-
atin − 14% [60], collagen − 14% [61, 62], hyaluronic acid 
− 5% [63], and/or their combinations [64–66]. However, 

Fig. 2 PRISMA flow diagram representing the selection process of the 
publications included for the systematic review. Abbreviations used, CM 
conditioned medium, n number of articles
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other natural biopolymers such as carrageenan [67], 
fibrinogen [66], and chondroitin [68] were also found 
in hydrogel formulations. Rare and unique components 
of natural origin, e.g., silk fibroin [69], spider silk fusion 
protein [70], decellularized extracellular matrix (ECM) 
of porcine skin [71], synthetic polymers like cellulose or 
its modifications [72], poly(vinyl alcohol) [67], short bio-
inspired octapeptide [52] or bioceramic materials (e.g., 
bioglass) [57] were introduced to design hydrogel-based 
dressings. Within the selection analyzed, the final hydro-
gels represented mainly soft delivery systems [55, 57, 59, 
61, 63–65, 70–72], or solid bandages [53], sponges [56, 
62], membranes [58], or films [54, 66].

The hydrogel structure represents a three-dimensional 
network which acts as a hydrophilic matrix ensuring 
prolonged and continuous release of embedded pro-
teins used for tissue regeneration (Table 1). The hydrogel 
structure is usually homogeneous, but some studies have 
developed nano-, microstructure-bearing composites, 
e.g., by using silk fibroin nanofibers [69], or by encap-
sulating CM components such as extracellular vesicles 
(exosomes) [56]. Alternatively, multilayer constructs were 
engineered using the particle-in-particle approach, e.g., 
alginate microparticles doped with proteins stimulating 
wound healing, and drug-containing poly(lactic-co-gly-
colic) acid (PLGA) microspheres to sequentially deliver 
bioactive molecules [57].

Hydrogels containing CM are commonly prepared in 
their final “ready-to-use” form, however advanced for-
mulations such as in situ-forming grafted hyaluronic acid 
hydrogels suggest simultaneous crosslinking and gelation 
directly at the site of application [63]. To prepare a stable 
hydrogel matrix, their chemical modification or physical 
treatment is performed. Calcium-based ionic crosslink-
ing in alginate hydrogels [53–55, 57, 65] dominates over 
photopolymerization [60, 63], temperature-induced [64, 
69–71], freeze-thaw [67], solvent-induced gelation [52] 
or covalent сrosslinking [62, 68].

Some hydrogels designed were also characterized as 
microporous materials [52, 53, 60, 68, 70]. The pore 
diameter was changed by varying the substitution degree 
and/or concentration of the gel-forming polymer and 
was shown to affect the release rate of encapsulated 
proteins of the cell secretome [60, 70]. The mean pore 
diameter varied greatly from 22 μm to 200 μm. The struc-
ture-functional and biopharmaceutical properties such 
as the protein release kinetics, hydrogel degradation, vis-
cosity and mechanical characteristics of the hydrogels 
analyzed in the selected articles are shown in Table  1. 
To enhance the efficiency of the hydrogel treatment, 
“smart” thermosensitive hydrogels based on chitosan/
collagen/β-glycerophosphate hydrogel were also engi-
neered [64]. These matrices were nonfluid at 37  °C and 
viscous at lower temperatures suggesting a possibility for 

Fig. 3 A five-year retrospective flowchart on the design of wound dressings based on hydrogels loaded with cell-conditioned medium. The panel rep-
resenting the time point of 2021 is adapted from [52]
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more effective filling of various types of wounds, includ-
ing severe burns [64].

Isolation and proteome profiling of cell-derived 
conditioned medium
In recent decades, numerous studies have demonstrated 
the beneficial effects of the cell secretome on wound 
healing [52, 54–56, 59, 64, 66–69, 71, 72], and the num-
ber of articles on this topic continues to grow rapidly.

According to the selection analyzed, primary cultures 
and/or cultures from biobanks or commercially available 
collections are used for the CM preparation. More than 
50% of the selected articles used mesenchymal stem/
stromal cells (MSCs) as the secretome sources. Although 
MSCs are considered to have low immunogenicity [73, 
74], recently, there have been a growing number of arti-
cles demonstrating that MSCs do not have a full immu-
nological privilege in an immunocompetent allogeneic 
host [75–77]. Therefore, the review also considers other 
sources of CM including the following animal and human 
cell types: murine macrophages, in particular RAW 264.7 
cells [53, 57], human M2 macrophages derived from 
monocytes THP-1 [58], dermal fibroblasts [62, 70] and 
human keratinocytes HaCaT [70], and human embryonic 
kidney (HEK) 293 cells [65].

The CM production is performed in the lab-scale 
quantities and based on cell culturing under predeter-
mined conditions using supplemented cell culture media, 
which may contain additional components to promote 
cell polarization or growth factors [53, 60, 61]. Prior to 
the secretome harvesting, an antibiotic component is 
usually removed from the culture medium. Further, the 
purification of the obtained medium using centrifuga-
tion or filtration is performed to eliminate undesired cell 
debris. Afterward, the samples are concentrated with 
a molecular weight cut-off (MWCO) filter. Then, cell 
CM is prepared for long-term manipulations and stor-
age by freezing at -20  °C – -80  °C or freeze-drying [59, 
60, 63, 65, 67, 69, 70]. However, during cell culturing 
some unusual conditions can be exploited to enrich the 
medium with cellular factors and bioactive molecules. 
For example, hypoxic atmosphere [60], gamma-irradia-
tion [78], or transfected cells overexpressing antioxidant 
proteins (nuclear factor erythroid 2–related factor 2) 
[65] were used. The typical cell lines, their key charac-
teristics and specific cultivation parameters to prepare 
cell CM are presented in Table 2. The resultant cell CM 
product is characterized by a large diversity of its com-
position, although the proteome profiling and detailed 
identification of its composition has been performed in 
several studies [53, 54, 59, 60, 69]. The most representa-
tive groups of biologically active molecules detected were 
growth factors, cytokines, chemokines and the others, 
including the ECM components (Fig. 4).

Encapsulation of conditioned medium into a hydrogel 
matrix
To incorporate CM into a hydrogel network, the pre-
pared secretome product was directly mixed with hydro-
gel precursors or a preliminary prepared hydrogel and 
allowed for gelation and/or mixing at pre-determined 
time and temperature conditions [52, 55, 60–65, 67, 68, 
70–72]. In several studies, crosslinking or photopolymer-
ization were performed after obtaining the H-CM mix-
ture [60]. In the case of solid dressings, the dry fabricated 
patches or bandages were impregnated with a CM solu-
tion [53, 54, 66]. To produce sponge-like H-CM dress-
ings, CM was initially introduced into a sodium alginate 
solution that was subsequently molded and freeze-dried 
[56]. In the case of micro-/nanostructured systems, CM 
was firstly encapsulated into sodium alginate microparti-
cles that were later embedded in the hydrogel matrix [57] 
or directly encapsulated into nanofiber hydrogels [69].

In vitro studies of hydrogels loaded with cell-conditioned 
medium
To evaluate the biocompatibility and cell proliferative 
activity of H-CM formulations, a wide range of meth-
ods were used, as presented in Table 3. Thus, the wound 
scratch was the most popular test for assessing the rate of 
cell migration imitating the wound healing process [52, 
54, 58, 60, 69, 70].

To assess the proliferative activity, the CCK8 method 
with staining of living/ dead cells was used [57, 63, 64, 
68, 69]. The articles considered also other crucial pro-
cesses that occurred in cells during wound healing, such 
as collagen deposition [54, 58], tube formation [60, 63], 
cell migration [54, 63], changes in cell phenotype [57, 
63], fibroblast differentiation [69], oxidative stress [65], 
inflammation and immune response [57, 61]. In general, 
all methods showed good biocompatibility and low cyto-
toxicity with a remarkable cell survival and proliferation 
for the hydrogels and H-CM formulations (Fig. 5).

In vivo wound healing potency and efficacy of hydrogels 
loaded with cell-conditioned medium as wound dressings
Models of wound defects in animals
Wounds represent disruptions in the integrity of the 
cutaneous barrier caused by surgery, trauma, or burns. 
Based on the statistical study, only in 2014 acute wounds 
resulted in 17.2  million hospital visits and this trend 
seems to gradually increase [80].

To explore the efficacy of novel wound healing tools 
and proposed strategies, animal models are actively 
exploited. To replicate the wound healing process, the 
majority of reviewed studies used small animals (mice, 
rats). Around 66% of the articles presented experiments 
on mice. Among them, 57% used a full-thickness cutane-
ous wound model, 36% reproduced diabetic ulcers, and 
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one article (about 7%) focused on the healing of third-
degree burns. The second most popular animal model 
was a rat model (29%). Among the rat model studies, the 
distribution was as follows: 83% - full-thickness wound, 
17% (one article) - II-IIIa-degree burns infected with 
Staphylococcus aureus. Only one study using big ani-
mals (sheep) with a full-thickness skin wound model was 
found [62].

An in vivo full-thickness acute wound model is the 
most common one in this review, but other types of 
wound models, including burns [59, 64] or skin flaps 
[71] are also considered (Table  4). To reproduce an 
acute wound, the animals were anesthetized, and full-
thickness skin wounds were created on their backs. A 
biopsy punch, surgical scissors or pre-heated molds (in 
the case of burn modelling) were applied. The existing 
wound models varied by their mean size (from 5.8 mm to 
14.9 mm) and geometry (Table 4). To avoid the pannicu-
lus carnosus muscle contraction, a splitting ring tightly 
sutured to the skin around the wound by 4/0 suture was 
utilized [55, 65].

Within the selected articles, two studies dealing with 
difficult-to-heal burn wounds were analyzed. Rodents 
such as mice and rats were used in these protocols. In 
detail, mice were anesthetized, and an iron mold heated 
to 95 °C was placed on the hairless back for 10 s to gener-
ate a burn with a square wound area (1.5 cm2). Wounds 
were debrided by removing necrotic tissue with sterile 
tweezers and washing with an aqueous solution of 3% 
hydrogen peroxide. Then, using a sterile cotton swab, the 
injured skin was covered with H-CM dressing, which was 
changed twice a day. In the other study, burns were cre-
ated by applying a rectangular metal box with a square 
bottom filled with pre-heated paraffin to the shaved back 
skin of anesthetized rats for 30  s. The resultant wound 
area was 4 cm2. 12  h after the formation of the burn 
wound, it was infected with Staphylococcus aureus as the 
pathogenic flora [59].

In the majority of the selected studies, wound mod-
els have been created in healthy animals. However, it is 
known that in related chronic diseases, in particular, in 
diabetes, wound healing is not sufficient and in some 
cases is accompanied by complications. A wound model 
in a diabetic animal is also often used and presented in 
selected articles [53, 57, 63, 70, 72]. For example, wounds 
were induced in 10–12-week-old male C57BL/KsJ db/db 
mice with leptin receptor deficient diabetes, having the 
blood glucose level higher than 300 mg/dL [63]. Another 
model included diabetes associated with hyperglyce-
mia (glucose level of 300 mg/dl), induced in 5-week- or 
8-week-old mice by a single intraperitoneal injection of 
streptozotocin (180 mg/kg − 200 mg/kg) [57, 72]. To pro-
duce diabetes in 6-week-old C57BL/6 wild type mice, a 
liver disease progression aggravation diet and a normal Ce
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Fig. 4 (See legend on next page.)
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chow diet were applied for 2 weeks. Then, the blood 
glucose of both groups was measured and compared to 
determine the onset of diabetes [70].

Wound healing protocols
H-CM formulations have been investigated as wound 
dressings in animal models using different protocols 
(Table 4). Most commonly, the efficacy of dressings was 
evaluated over a time-course of 7, 14 or 21 days. Sterile 
formulations were applied once to the wound defect area 
immediately after the surgery using a sterile transpar-
ent barrier (e.g., Tegaderm®), an antibiotic-impregnated 
gauze or alternative tools to cover the wound and to 
protect the hydrogels once installed [52–56, 61, 62, 67, 
69, 70, 72]. At the same time, the patches were sutured 
to skin around the wound or, after the hydrogel applica-
tion, the skin flap was replaced onto the wound site and 
sutured with nylon to the wound edges [66, 71]. However, 
in one of studies the experimental protocol assumed that 
the hydrogel containing NRF2-CM should be deposited 
on the wound only after injecting MSCs [65]. In several 
studies, the wound dressing was changed once, daily or 
at 2–3  day intervals during the given time-course. In 
the case of advanced in situ formation or spray-filming 
hydrogels, the treatment involved photopolymerization 
and hydrogel-spraying stages, respectively [63, 68].

The animals were divided into experimental and con-
trol groups including positive and negative controls 
respectively. Then, they were anesthetized and full-
thickness skin wounds were created on their backs. After 
the treatment, the regions corresponding to the created 
wounds were analyzed in each group. The wound closure 
was monitored in the time-course, which also included 
several intermediate time points to control the wound 
contraction on days 0, 2, 4, 7 and 14 or 28 [54, 56, 61, 66].

Wound healing efficiency
To estimate the wound healing efficiency of H-CM, the 
wound area was examined within a certain interval to 
assess the wound closure rate macroscopically and/or 
by means of the histological analysis and immunohisto-
chemistry staining [52–72]. Besides, the following param-
eters were monitored: abilities of cells to proliferate [71], 
migrate, and form tubes [67]; neovascularization and 
new vessel maturation [52, 54–56, 65, 68, 69, 72]; epider-
mis thickness [62]; keratinocyte migration and matura-
tion [55, 58, 70]; collagen deposition and density [56–60]; 
epithelialization [55–57, 59, 61, 62, 65, 68, 72]; fibroblast 
migration [55]; granulation tissue formation [56, 61, 64, 
67]; angiogenesis [54, 55, 60, 63, 67, 70]; inflammatory 
cell (macrophage) infiltration [58, 59, 63–65, 67, 71, 72] 
and expression levels of inflammation-related genes [53, 
72]. Additionally, PCR-based estimation of cytokine or 
chemokine expression [72] or LC-MS/MS analysis of 
wound proteome was conducted [56]. Proliferation and 
migration of endothelial cells, collagen deposition, neo-
vascularization, angiogenesis, and keratinocyte matura-
tion were observed in the case of all H-CM formulations. 
The engineered dressings were demonstrated to decrease 
the inflammatory response [72] and to modulate macro-
phage polarization to the M2-phenotype [57, 60, 63]. The 
molecular mechanisms of wound healing due to appli-
cation of cell secretome-containing hydrogels included 
Akt/mTOR and MAPK signaling pathway, downregulat-
ing the expression levels of proinflammatory agents such 
as IL-1β, IL-6, CXCL-1, and CXCL-2, as well as expres-
sion of proteins involved in wound healing (e.g., Fga, Fgg, 
F13a1, Tnc, Arg1, Anxa5, Col1a1, Dcn, EGFR, VEGF, 
HGF, IGF and etc.) [56, 60, 67, 72]. The regenerated tis-
sues were characterized by the expression of CD31, a vas-
cular differentiation marker [53, 54, 57, 60, 70], Ki-67, a 
cell proliferation marker [53, 64, 71], α-SMA indicating 
the mature vessel-like structure [53, 54, 58, 69], P63, a 

(See figure on previous page.)
Fig. 4 The major components of the proteomic profiles of the cell-conditioned media produced and analyzed within the selected articles. The molecules 
are scored by the incidence of their detection in the analyzed selection [53–55, 60, 61, 63–66, 69, 79]. The molecular function of the proteins is presented 
according to the classification from the UniProt database. Abbreviations VEGF Vascular endothelial growth factor, bFGF Basic fibroblast growth factor, EGF 
Epidermal growth factor, PDGF Platelet-derived growth factor, IGF Insulin-like growth factor, KGF Keratinocyte growth factor, TGFB Transforming growth 
factor beta, HGF Hepatocyte growth factor, IGF-II Insulin-like growth factor 2, FGF-7 Fibroblast growth factor 7, GDNF Glial cell line-derived neurotrophic 
factor, GM-CSF Granulocyte-macrophage colony-stimulating factor, M-CSF Macrophage colony-stimulating factor, B-NGF Beta-nerve growth factor, SCF 
Stem cell factor, SDF-1alpha Stromal cell-derived factor 1, NT-4 Neurotrophin-4, LIF Leukemia inhibitory factor, CXCL1/GROalpha Growth-related onco-
gene-alpha, IL-2 Interleukin-2, IL-3 Interleukin-3, IL-4 Interleukin-4, IL-5 Interleukin-5, IL-6 Interleukin-6, IL-7 Interleukin-7, IL-8 Interleukin-8, IL-9 Interleukin-9, 
IL-1alpha Interleukin-1 alpha, IL-1beta Interleukin-1 beta, IL-1ra Interleukin-1 receptor antagonist, IL-10 Interleukin-10, IL-12(p40) Interleukin-12 subunit 
beta, IL-12(p70) Interleukin-12 heterodimer, IL-13 Interleukin-13, IL-15 Interleukin-15, IL-16 Interleukin-16, IL-17 Interleukin-17, IL-18 Interleukin-18, IFN-al-
pha2 Interferon alpha-2, IFN-gamma Interferon gamma, TNF-alpha Tumor necrosis factor alpha, TNF-beta Tumor necrosis factor beta, TRAIL Tumor necrosis 
factor-related apoptosis-inducing ligand, MIF Migration inhibitory factor, MIP-2 Macrophage inflammatory protein-2, CCL C-C motif chemokine ligand, 
CTACK Cutaneous T-cell-attracting chemokine, MCP-3 Monocyte-chemotactic protein 3, CCL/MCP-1 Monocyte chemoattractant protein-1, MIG Monokine 
induced gamma interferon, MIP-1alpha Macrophage inflammatory protein-1 alpha, MIP-1beta Macrophage inflammatory protein-1 beta, CCL5 C-C motif 
chemokine ligand 5, CXCL10/IP-10 Interferon gamma-induced protein 10, LIX LPS-induced CXC chemokine, KC Keratinocyte-derived chemokine, IGFBP-1 
Insulin-like growth factor-binding protein-1, IGFBP-2 Insulin-like growth factor-binding protein-2, IGFBP-4 Insulin-like growth factor-binding protein-4, 
IGFBP-6 Insulin-like growth factor-binding protein-6, Serpin E1/PAI-1 Endothelial plasminogen activator inhibitor/ Plasminogen activator inhibitor-1, M-CSF 
R Recombinant macrophage colony-stimulating factor, G-CSF Granulocyte colony-stimulating factor, IL-2Ralpha Interleukin-2 receptor alpha, SHH Sonic 
hedgehog chemokine, PDGF-BB Platelet-derived growth factor-BB homodimer, UC Umbilical cord: MSCs Mesenchymal stem/stromal cells
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unique marker of the epidermal stem cells [66], collagen 
I, collagen III [57] and cytokeratins [58], whereas CD206 
expression in the treated tissues indicated the presence 
of M2-macrophages [58, 63]. The cellular-molecular 
response induced by each developed formulation is sum-
marized in Table S3, Supporting Information.

Despite the variety of the techniques used, the visual 
monitoring of wound contraction remains one of the 
most important evaluations to determine the efficiency 
of the treatment applied. The remaining wound area at a 
specific time point was quantitatively calculated to assess 
the wound closure rate as a percentage of the wound 
region normalized to that of day 0, using an image pro-
cessing software [54]. The main factors for assessing the 
effectiveness of wound healing are its size and healing 
time. The healing time was described as the time required 
for the complete reepithelialization of the wound [64–66, 
71]. In the majority of studies the wound contraction 
rate was investigated by taking photographs and adjust-
ing them to a standard scale, using an image processing 
software. The analysis of the selected articles has dem-
onstrated that H-CM effectively promoted regeneration 
in acute and chronic wounds (Fig.  6). H-CM dressings 
showed the highest efficiency of wound contraction in 
both healthy and diabetic groups, especially in the early 
stages (6–8 days). These results are consistent with the 
in vitro experiments showing the increased proliferative 
and angiogenesis activity of H-CM formulations.

Almost all the articles we found describe the positive 
outcomes from applying H-CM onto the skin injury area. 

The most frequently observed effects involved: enhanced 
cellular activity of dermal fibroblasts and endothelial 
cells, significantly accelerated wound contraction and 
promoted wound healing, reduced inflammation with no 
fibrotic scar formation, and enhanced re-epithelialization 
and angiogenesis.

Discussion
Hydrogels have demonstrated a great potential as dress-
ings for the treatment of skin injuries [81–85], and for 
tissue or 3D scaffold engineering [86, 87]. Their final 
state can be tuned depending on the desired applica-
tion. A variety of soft and solid hydrogel-based dressings 
have been developed during the last five years. Cell-
derived CM has been added to hydrogel formulations, 
thus combining a hydrogel matrix and the cell secretome 
to enhance skin regeneration capacity and wound heal-
ing [42, 53, 60, 88]. Hydrogels are simple to prepare, and 
their mechanical properties, skin adhesion, porosity, rhe-
ological characteristics, and release kinetics can be eas-
ily adapted and controlled [88, 89]. Cell-CM represents a 
large ensemble of proteins of different molecular weights 
(from 5 to 504 kDa) and molecular functions [90], as well 
as exosomes [91]. These are mainly hydrophilic and read-
ily encapsulated into a hydrogel network during cross-
linking or polymerization. To tackle the prolonged and/
or controlled release of proteins, micro-/nanostructured 
systems can be designed [56, 57].

However, scaling up the production of a hydrogel is 
challenging, especially using such components as the 
ECM. These components have a great composition vari-
ability, which may cause difficulties in the standardiza-
tion of the technology and the final product. Moreover, it 
was found that ECM hydrogels loaded with ASC-derived 
CM did not influence wound healing in a skin flap rat 
model as compared to the control groups [71]. It may be 
explained by several reasons. First, the therapeutic effect 
is influenced by the CM dosage in the hydrogel. We sug-
gest that this limitation may have taken place, since the 
CM concentration used in that study was as small as one-
eighteenth of the volume. It is likely that this amount may 
not have been sufficient to produce a clear therapeutic 
effect, especially considering that most of the studies pre-
sented in this review used one-to-one ratios of CM and 
a hydrogel by volume. Second, the retention of the ECM 
hydrogel remained unclear. It was hard to distinguish the 
ECM hydrogel and native donor collagen fibers micro-
scopically in the histological samples. Moreover, the 
release of growth factors could not be measured in the 
in vivo model. Third, an important limitation was rather 
rapid wound healing in the control group of rats, which 
may affect the beneficial influence of H-CM. The authors 
suggested that it might be more relevant to use rats with 
defective wound healing (e.g., diabetic animals) or larger 

Fig. 5 Representative image of the main in vitro methods assessing effec-
tiveness on cell proliferation, cell migration, tube formation and collagen 
deposition of hydrogels loaded with conditioned medium. The data were 
normalized using percent relative abundance. The control bar represents 
the data collected in the case of samples that did not contain conditioned 
medium. The data is shown as mean ± standard deviation; *p < 0.05, ac-
cording to two sample t-test. Abbreviations used, H-CM hydrogel loaded 
with cell-conditioned medium

 



Page 16 of 23Nifontova et al. Stem Cell Research & Therapy          (2024) 15:371 

A
ni

m
al

 
m

od
el

A
ni

m
al

 a
ge

, 
st

ra
in

, h
ea

lth
 

st
at

us

W
ou

nd
 ty

pe
 a

nd
 s

iz
e

W
ou

nd
s/

an
im

al
N

um
be

r o
f 

an
im

al
s

Ta
rg

et
 g

ro
up

s
Co

nt
ro

l g
ro

up
s

Ti
m

e 
co

ur
se

, 
in

cl
ud

in
g 

in
te

r-
m

ed
ia

te
 c

on
tr

ol
 

po
in

ts

D
re

ss
-

in
g 

ch
an

ge

N
ot

es
Re

-
fe

-
re

nc
e

M
ur

in
e

20
-m

on
th

-
ol

d,
 C

57
BL

/6
J, 

he
al

th
y

Ac
ut

e 
(fu

ll-
th

ic
kn

es
s)

, 
di

am
et

er
 1

0 
m

m
1

12
1)

 G
el

M
A 

+
 F1

2 
gr

ou
p 

(n
 =

 6
); 

2)
 G

el
M

A 
+

 h
yp

o-
CM

 (n
 =

 6
); 

3)
 

G
el

M
A 

+
 n

or
-C

M
 (n

 =
 6

)

1)
 B

la
nk

 (n
 =

 6
); 

2)
 G

el
M

A 
(n

 =
 6

)
0,

 4
, 8

 a
nd

 1
2 

da
ys

-
[6

0]

4–
5-

m
on

th
-o

ld
, 

C5
7B

L/
6,

 h
ea

lth
y

Ac
ut

e 
(fu

ll-
th

ic
kn

es
s 

ex
ci

sio
na

l),
 d

ia
m

et
er

 
6 

m
m

1
60

1)
 C

G
 h

yd
ro

ge
l-e

m
be

dd
ed

 w
ith

 C
M

 
(n

 =
 1

0)
; 2

) P
VA

 h
yd

ro
ge

l-e
m

be
dd

ed
 

w
ith

 C
M

 (n
 =

 1
1)

1)
 N

o 
tr

ea
tm

en
t (

n 
=

 1
2)

; 
2)

 C
G

 h
yd

ro
ge

l (
n 

=
 9

); 
3)

 
PV

A 
hy

dr
og

el
 (n

 =
 1

0)
; 4

) 
CM

 (n
 =

 8
)

3 
an

d 
14

 d
ay

s
-

[6
7]

8-
w

ee
k-

ol
d,

 
C5

7B
L/

6,
 

di
ab

et
ic

Ac
ut

e,
 d

ia
m

et
er

 
10

 m
m

1
45

1)
 S

A/
BG

-S
A-

PL
G

A 
(n

 =
 9

); 
2)

 S
A/

BG
SA

-P
LG

AP
FD

 (n
 =

 9
); 

3)
 S

A/
BG

-
SA

CM
-P

LG
A 

(n
 =

 9
); 

4)
 S

A/
BG

-S
AC

M
-

PL
G

AP
FD

 (n
 =

 9
)

1)
 N

o 
tr

ea
tm

en
t (

n 
=

 9
)

6,
 1

2,
 a

nd
 1

8 
da

ys
-

[5
7]

10
-w

ee
k-

ol
d,

 
C5

7/
BL

6,
 h

ea
lth

y
Ac

ut
e 

(fu
ll-

th
ic

kn
es

s)
, 

di
am

et
er

 5
 m

m
1

N
A

1)
 G

V8
 p

ep
tid

e 
hy

dr
og

el
 c

on
ta

in
in

g 
CM

 (n
 =

 N
A)

1)
 N

o 
tr

ea
tm

en
t (

n 
=

 N
A)

; 
2)

 G
V8

 p
ep

tid
e 

hy
dr

og
el

 
(n

 =
 N

A)

0,
 2

, 5
 a

nd
 7

 d
ay

s
-

[5
2]

6-
w

ee
k-

ol
d,

 
C5

7B
L/

6,
 h

ea
lth

y
Ac

ut
e 

(b
ur

n)
, s

qu
ar

e 
w

ou
nd

 a
re

a 
(w

ith
 a

 
sid

e-
le

ng
th

 o
f 1

5 
m

m
)

1
72

1)
 C

M
-h

yd
ro

ge
l (

n 
=

 1
8)

1)
 u

CM
 (n

 =
 1

8)
; 2

) C
M

 
(n

 =
 1

8)
4,

 1
4,

 a
nd

 2
8 

da
ys

Tw
ic

e 
pe

r d
ay

[6
4]

6-
w

ee
k-

ol
d,

 
C5

7B
L/

6 
w

ild
-

ty
pe

, d
ia

be
tic

Ac
ut

e 
(fu

ll-
th

ic
kn

es
s 

sp
lin

tin
g)

, d
ia

m
et

er
 

6 
m

m

4
14

1)
 S

ec
re

to
m

e-
la

de
n 

fu
sio

n 
hy

dr
og

el
 

(n
 =

 N
A)

1)
 P

BS
 (n

 =
 N

A)
; 2

) S
ec

re
-

to
m

e 
(n

 =
 N

A)
; 3

) F
us

io
n 

hy
dr

og
el

 (n
 =

 N
A)

0,
 2

, 4
, 6

, 8
 a

nd
 1

0 
da

ys
-

[7
0]

10
-1

2-
w

ee
k-

ol
d,

 
C5

7B
L/

Ks
J d

b/
db

, d
ia

be
tic

Ac
ut

e 
(fu

ll 
th

ic
kn

es
s)

, 
di

am
et

er
 8

 m
m

2
18

1)
 C

M
-g

el
 (n

 =
 6

)
1)

 G
el

 (n
 =

 6
); 

2)
 V

as
el

in
e 

ga
uz

e 
(n

 =
 6

)
0,

 7
 a

nd
 1

2 
da

ys
-

[6
3]

C5
7,

 h
ea

lth
y

Ac
ut

e 
(fu

ll-
th

ic
kn

es
s)

, 
di

am
et

er
 1

0 
m

m
1

N
A

1)
 C

M
-c

on
ta

in
in

g 
hy

dr
og

el
 (0

,5
%

, 
n 

=
 N

A)
; 2

) C
M

-c
on

ta
in

in
g 

hy
dr

o-
ge

l (
1%

, n
 =

 N
A)

; 3
) C

M
-c

on
ta

in
in

g 
hy

dr
og

el
 (2

%
, n

 =
 N

A)

1)
 N

o 
tr

ea
tm

en
t (

n 
=

 N
A)

7,
14

 a
nd

 2
1 

da
ys

-
[6

9]

16
-w

ee
k-

ol
d,

 d
b/

db
, d

ia
be

tic
Ac

ut
e 

(fu
ll-

th
ic

kn
es

s)
, 

di
am

et
er

 6
 m

m
2

N
A

1)
 C

M
0-

co
nt

ai
ni

ng
 b

an
da

ge
 

(n
 =

 5
–7

); 
2)

 C
M

1-
co

nt
ai

ni
ng

 b
an

-
da

ge
 (n

 =
 5

–7
); 

3)
 C

M
2a

-c
on

ta
in

in
g 

ba
nd

ag
e 

(n
 =

 5
–7

); 
4)

 C
M

2c
-c

on
ta

in
-

in
g 

ba
nd

ag
e 

(n
 =

 5
–7

)

1)
 C

on
tr

ol
 b

an
da

ge
 

(n
 =

 5
–7

)
0,

 3
, 5

, 7
 a

nd
 1

0 
da

ys
-

[5
3]

Ta
bl

e 
4 

Re
se

ar
ch

 p
ro

to
co

ls 
fo

r a
ss

es
sin

g 
th

e 
hy

dr
og

el
s l

oa
de

d 
w

ith
 c

el
l-c

on
di

tio
ne

d 
m

ed
iu

m
 in

 a
ni

m
al

 m
od

el
s o

f w
ou

nd
 m

an
ag

em
en

t



Page 17 of 23Nifontova et al. Stem Cell Research & Therapy          (2024) 15:371 

A
ni

m
al

 
m

od
el

A
ni

m
al

 a
ge

, 
st

ra
in

, h
ea

lth
 

st
at

us

W
ou

nd
 ty

pe
 a

nd
 s

iz
e

W
ou

nd
s/

an
im

al
N

um
be

r o
f 

an
im

al
s

Ta
rg

et
 g

ro
up

s
Co

nt
ro

l g
ro

up
s

Ti
m

e 
co

ur
se

, 
in

cl
ud

in
g 

in
te

r-
m

ed
ia

te
 c

on
tr

ol
 

po
in

ts

D
re

ss
-

in
g 

ch
an

ge

N
ot

es
Re

-
fe

-
re

nc
e

6-
w

ee
k-

ol
d,

 
BA

LB
/c

, h
ea

lth
y

Ac
ut

e 
(fu

ll-
th

ic
kn

es
s)

, 
di

am
et

er
 8

 m
m

2
12

1)
 A

C 
(n

 =
 3

); 
2)

 A
EC

 (n
 =

 3
)

1)
 A

S 
(n

 =
 3

); 
2)

 A
ES

 (n
 =

 3
)

0,
 2

, 4
, 7

 a
nd

 1
4 

da
ys

-
[5

4]

6-
w

ee
k-

ol
d,

 
BA

LB
/c

, h
ea

lth
y

Ac
ut

e 
(fu

ll-
th

ic
kn

es
s)

, 
di

am
et

er
 8

 m
m

2
24

1)
 M

2-
CC

M
 (n

 =
 3

); 
2)

 M
2-

hF
D

M
-C

CM
 

(n
 =

 3
)

1)
 S

er
um

-fr
ee

 m
ed

ia
 

(n
eg

at
iv

e 
co

nt
ro

l, 
n 

=
 3

); 
2)

 1
0%

FB
S-

su
pp

le
m

en
te

d 
m

ed
ia

 (p
os

iti
ve

 c
on

tr
ol

, 
n 

=
 3

)

0,
7,

 a
nd

 1
4 

da
ys

Ev
er

y 
2–

3 
da

ys
[5

8]

2-
m

on
th

-o
ld

, 
BA

LB
/c

, h
ea

lth
y

Ac
ut

e 
(fu

ll-
th

ic
kn

es
s)

, 
di

am
et

er
 1

0 
m

m
1

N
A

1)
 C

ol
la

ge
n 

hy
dr

og
el

 c
on

ta
in

in
g 

20
0 

μg
/m

L 
D

FC
M

-K
M

1 
(n

 =
 N

A)
; 2

) 
Co

lla
ge

n 
hy

dr
og

el
 c

on
ta

in
in

g 
40

0 
μg

/m
L 

D
FC

M
-K

M
 (n

 =
 N

A)
; 3

) C
ol

-
la

ge
n 

hy
dr

og
el

 c
on

ta
in

in
g 

40
0 

μg
/

m
L 

D
FC

M
-F

M
 (n

 =
 N

A)
; 4

) C
ol

la
ge

n 
hy

dr
og

el
 c

on
ta

in
in

g 
80

0 
μg

/m
L 

D
FC

M
-F

M
(n

 =
 N

A)

1)
 N

o 
tr

ea
tm

en
t (

n 
=

 6
); 

2)
 

Co
lla

ge
n 

hy
dr

og
el

 (n
 =

 6
)

0,
 7

, 1
4,

 a
nd

 1
7 

da
ys

Tw
ic

e 
(a

t d
ay

 
0 

an
d 

at
 

da
y 

7)

[6
1]

21
-w

ee
k-

ol
d,

 
st

ra
in

 is
 n

ot
 in

di
-

ca
te

d,
 h

ea
lth

y

Ac
ut

e 
(fu

ll-
th

ic
kn

es
s)

, 
di

am
et

er
 6

 m
m

2
N

A
1)

 L
yo

-s
ec

re
to

m
e-

lo
ad

ed
 a

lg
in

at
e 

dr
es

sin
g 

(n
 =

 N
A)

2)
 A

lg
in

at
e 

dr
es

sin
g 

(n
 =

 N
A)

3,
 7

, 1
4,

 a
nd

 2
1 

da
ys

-
[5

6]

5-
w

ee
k-

ol
d,

 IC
R,

 
di

ab
et

ic
Ac

ut
e 

(fu
ll-

th
ic

kn
es

s)
, 

di
am

et
er

 8
 m

m
2

N
A

1)
 H

yd
ro

ge
l c

on
ta

in
in

g 
no

rm
ox

ic
 

CM
 (n

 =
 N

A)
; 2

) H
yd

ro
ge

l c
on

ta
in

in
g 

hy
po

xi
c 

CM
 (n

 =
 N

A)

1)
 H

yd
ro

ge
l c

on
ta

in
-

in
g 

st
an

da
rd

 m
ed

iu
m

 
(n

 =
 N

A)

0,
 1

, 3
, 5

, 7
, a

nd
 

9 
da

ys
-

[7
2]

Ta
bl

e 
4 

(c
on

tin
ue

d)

 



Page 18 of 23Nifontova et al. Stem Cell Research & Therapy          (2024) 15:371 

A
ni

m
al

 
m

od
el

A
ni

m
al

 a
ge

, 
st

ra
in

, h
ea

lth
 

st
at

us

W
ou

nd
 ty

pe
 a

nd
 s

iz
e

W
ou

nd
s/

an
im

al
N

um
be

r o
f 

an
im

al
s

Ta
rg

et
 g

ro
up

s
Co

nt
ro

l g
ro

up
s

Ti
m

e 
co

ur
se

, 
in

cl
ud

in
g 

in
te

r-
m

ed
ia

te
 c

on
tr

ol
 

po
in

ts

D
re

ss
-

in
g 

ch
an

ge

N
ot

es
Re

-
fe

-
re

nc
e

Ra
t

Ad
ul

t, 
Sp

ra
gu

e-
D

aw
le

y, 
he

al
th

y
Ac

ut
e 

(c
irc

ul
ar

, f
ul

l-
th

ic
kn

es
s)

, d
ia

m
et

er
 

10
 m

m

1
36

1)
 H

yd
ro

ge
l c

on
ta

in
in

g 
CM

 (n
 =

 9
)

1)
 S

al
in

e 
so

lu
tio

n 
(n

 =
 9

); 
2)

 C
M

 (n
 =

 9
); 

3)
 H

yd
ro

ge
l 

(n
 =

 9
)

0,
 3

, 7
, 1

0 
an

d 
14

 
da

ys
-

[6
8]

Ad
ul

t, 
Sp

ra
gu

e-
D

aw
le

y, 
he

al
th

y
Ac

ut
e 

(fu
ll-

th
ic

ke
ss

), 
di

am
et

er
 1

5 
m

m
3

20
1)

Bi
oa

ct
iv

e 
fu

nc
tio

na
l

co
m

po
sit

e 
pa

tc
he

s c
on

ta
in

ed
 

EM
SC

s-
CM

 (n
 =

 N
A)

1)
 N

o 
tr

ea
tm

en
t (

n 
=

 N
A)

; 
2)

 C
om

po
sit

e 
pa

tc
he

s 
w

ith
ou

t E
M

SC
s-

CM
 

(n
 =

 N
A)

14
, 2

1,
 d

 2
8 

da
ys

-
[6

6]

W
ist

ar
, h

ea
lth

y
Ac

ut
e 

(fu
ll-

th
ic

kn
es

s)
, 

di
am

et
er

 2
0 

m
m

1
36

1)
 S

A/
G

-V
-C

M
 g

ro
up

 (n
 =

 3
); 

2)
 S

A/
G

-
LL

-3
7-

CM
 (n

 =
 3

)
1)

 P
BS

 (n
 =

 3
); 

2)
 S

A/
G

-P
BS

 
(n

 =
 3

)
0,

7,
14

 a
nd

 2
1 

da
ys

-
[5

5]

W
ist

ar
, h

ea
lth

y
Ac

ut
e 

(fu
ll-

th
ic

kn
es

s)
, 

di
am

et
er

 2
0 

m
m

1
36

1)
 H

yd
ro

ge
l l

oa
de

d 
w

ith
 N

RF
2-

CM
 

an
d 

co
m

bi
ne

d 
w

ith
 M

SC
s (

n 
=

 3
); 

2)
 H

yd
ro

ge
l l

oa
de

d 
w

ith
 V

-C
M

 a
nd

 
co

m
bi

ne
d 

w
ith

 M
SC

s (
n 

=
 3

)

1)
 P

BS
 (n

 =
 3

); 
2)

 M
SC

s 
(n

 =
 3

)
0,

7,
14

 a
nd

 2
1 

da
ys

-
[6

5]

8-
w

ee
k-

ol
d,

 
W

ist
ar

, h
ea

lth
y

Pe
di

cl
ed

 sk
in

 fl
ap

1
60

1)
 E

CM
 h

yd
ro

ge
l w

ith
 C

M
e 

(n
 =

 5
)

1)
 D

M
EM

 (n
 =

 5
); 

2)
 E

CM
 

hy
dr

og
el

 (n
 =

 5
); 

3)
 C

M
e 

(n
 =

 5
)

7,
14

, a
nd

 2
8 

da
ys

-
[7

1]

3-
m

on
th

-o
ld

, 
W

ist
ar

, h
ea

lth
y

Ac
ut

e 
(b

ur
n)

, a
re

a 
of

 
4 

cm
2

1
40

1)
 M

M
SC

 se
cr

et
om

e-
ba

se
d 

ch
ito

sa
n 

ge
l (

n 
=

 1
0)

1)
 C

on
tr

ol
 (m

ed
ic

al
 

Va
se

lin
e 

oi
l, 

n 
=

 1
0)

; 2
) 

Be
pa

nt
he

n 
Pl

us
 (c

re
am

 
fo

r e
xt

er
na

l u
se

, n
 =

 1
0)

; 
3)

 M
ira

m
ist

in
 so

lu
tio

n 
fo

r 
to

pi
ca

l a
pp

lic
at

io
n 

0.
01

%
, 

n 
=

 1
0

4 
an

d 
7 

da
ys

Th
e 

fo
rm

ul
a-

tio
ns

 
w

er
e 

ap
pl

ie
d 

24
 h

 
la

te
r a

nd
 

th
en

 
da

ily
 fo

r 
3 

da
ys

 
(n

 =
 5

) o
r 

7 
da

ys
(n

 =
 5

) 
in

 e
ac

h 
gr

ou
p

W
ou

nd
 

ar
ea

 
co

nt
am

-
in

at
ed

 
w

ith
 

St
ap

hy
-

lo
co

cc
us

 
au

re
us

[5
9]

Sh
ee

p
6-

8-
m

on
th

-o
ld

, 
Si

am
es

e 
lo

ng
 

ta
il, 

he
al

th
y

Ac
ut

e 
(fu

ll-
th

ic
kn

es
s)

, 
ar

ea
 2

0c
m

2
4

6
1)

 C
ol

la
ge

n 
hy

dr
og

el
 lo

ad
ed

 w
ith

 
D

FC
M

 (n
 =

 6
); 

2)
 C

ol
la

ge
n 

sp
on

ge
 

sc
aff

ol
d 

w
ith

fre
sh

ly
 h

ar
ve

st
ed

 sk
in

 c
el

l (
n 

=
 6

); 
3)

 
Pl

at
el

et
-r

ic
h-

pl
as

m
a 

ge
l (

n 
=

 6
)

1)
 N

o 
tr

ea
tm

en
t (

n 
=

 6
)

0,
 7

, 1
4 

an
d 

21
 

da
ys

Th
ric

e,
 

in
 7

 d
ay

 
in

te
rv

al

[6
2]

Ta
bl

e 
4 

(c
on

tin
ue

d)
 



Page 19 of 23Nifontova et al. Stem Cell Research & Therapy          (2024) 15:371 

mammals such as pigs, which are more similar to humans 
in regard to wound healing.

Other important limitations are related to the cell CM 
therapeutics that lacks standardization of bioprocess-
ing, and information on its composition and stability. 
For instance, the MSC secretome is characterized by the 
potential difference in its composition depending on the 
type, origin and localization of donor cells from which 
the secretome was obtained. This systematic review pres-
ents CM produced by primary cultures obtained from 
the waste fat of patients who had undergone liposuction 
[60, 71], from mice and human bone marrow [53, 54], 
from the umbilical cord of newborn infants delivered by 
caesarean sections [55, 59, 63, 64, 69, 72], from skin tis-
sue samples after abdominoplasty or face-lift surgery [56, 
61], from nasal septum and inferior nasal concha of rats 
[66]. Other sources of CM included cell lines cultivated 
or purchased from commercial companies such as RAW 
264.7 cells (a murine-derived macrophage cell line), L929 
cells (an areolar-derived fibroblast cell line), hTERT 
immortalized adipose-derived mesenchymal stem cells 
(ADMSC, SCRC-4000, (American type culture collection 
(ATCC)) [52], stable HEK-293 cell line expressing NRF2 
(NRF2-HEK-293) [65], human telomerase reverse tran-
scriptase (hTERT)–immortalized ADMSCs (SCRC-4000) 
[70], THP-1, human monocyte-like cells (ATCC) [58]. 
We propose that such a large variation in cell sources and 
their potential differences in secretomes imposes certain 
difficulties on the process of standardizing the composi-
tion of a therapeutic product used in the wound treat-
ment. The secretome contains > > 300 of proteins with 
different activity [92] (according to LC-MS/MS data of 

CM profiling [67, 70, 93]), and it seems quite difficult to 
analyze the target effect of each of them on tissue regen-
eration. Therefore, the regeneration and wound healing 
capacity is explained by synergy of all CM components. 
However, the existing research on the development of 
hydrogels for their use as wound dressings is still repre-
sented by numerous proof-of-concept studies. It is inter-
esting to note that, within the last five years, there have 
been no studies describing the ongoing clinical trials of 
the H-CM dressings. Only one paper mentioned the start 
of the MARSYAS II trials involving a total of 132 patients, 
assessing the efficiency of the APOSEC secretome-based 
treatment, but this study is in progress and has not yet 
been completed [78, 94].

To further implement hydrogel-based dressings and 
efficiently translate them into clinics, the manufacturing 
technology should be optimized to result in the GMP-
compliant and “ready-off-the shelf” final product [56]. 
The technique used should meet the sterility require-
ments. In particular, the possibility applying the modern 
approaches such as 3D bioprinting or electrospinning 
should be explored in the future. These techniques may 
represent promising alternatives to already existing 
hydrogel production strategies requiring multiple stages 
[95–97]. To analyze the CM’s wound healing properties 
after the incorporation into a hydrogel matrix, a greater 
number of studies should be conducted with the focus 
on disease-specific skin injuries (diabetic wounds, ulcers, 
and burns), involving complete in vitro/in vivo evalu-
ation. For this purpose, modern microfluidic wound-
on-a-chip or healing-on-a-chip models can be exploited 
[98–100]. Moreover, to reduce the laboratory costs asso-
ciated with in vivo studies, alternative ex vivo wound 
models are being developed [101–103], and the possibil-
ity of the use of other small animal models, e.g., leech, 
and specific conditions for wound healing are still being 
discussed [104].

Conclusions
The development of hydrogel-based dressings for the 
treatment of skin defects and wounds is a dynamic area, 
with hundreds of publications. This multidisciplinary 
research field involves chemical engineering, regen-
erative medicine and biotechnology. In this review, we 
provide a systematic analysis of the key points on the 
design, structural-functional properties, and in vitro/
in vivo assessment of H-CM dressings for the wound 
treatment. The cell secretome embedded into hydro-
gel matrices is an effective tool to heal skin lesions and 
wounds. In the future, more studies exploring novel 
approaches for H-CM fabrication, or harmonized proto-
cols for animal studies are likely to be published. We also 
expect further translation of the designed dressings into 

Fig. 6 The quantitative analysis of wound contraction rate in vivo. The 
data represent healthy and diabetic animal models with relative healing 
effectiveness in control and target (treated with hydrogel and hydrogel 
loaded with cell-conditioned medium) groups after 6–8 and 12–14 days 
of wounding. The data is shown as mean ± standard deviation; *p < 0.1, 
according to one-way ANOVA test. Abbreviations used, Ctrl control, H-CM 
hydrogel loaded with cell-conditioned medium, H hydrogel
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clinical research to validate the efficiency and safety of 
the designed regenerative technology.
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