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Abstract

Background Wound healing represents a complex biological process, critically important in clinical practice due to
its direct implication in a patient’s recovery and quality of life. Conservative wound management frequently falls short
in providing an ideal environment for the optimal tissue regeneration, often resulting in extended healing periods
and elevated risk of infection and other complications. The emerging biomaterials, particularly hydrogels, have shown
substantial promise in addressing these challenges by offering properties such as biocompatibility, biodegradability,
and the ability to cure wound environment. Recent advancements have highlighted the therapeutic potential of
integrating cell-derived conditioned medium (CM) into hydrogel matrices. Cell-derived CM represents a rich array of
bioactive molecules, demonstrating significant efficacy in modulating cellular activities crucial for wound healing,
including cellular proliferation, migration, and angiogenesis.

Methods The methodology of this review adheres to the standards set by the Preferred Reporting Items for
Systematic Review and Meta-Analysis (PRISMA) guidelines. The review includes a selection of studies published
within the last five years, focusing on in vivo experiments involving various types of skin injuries treated with topically
applied hydrogels loaded with CM (H-CM). The search strategy refers to the PICO framework and includes the
assessment of study quality by CAMARADES tool.

Results The systematic review represents a detailed evaluation of H-CM dressings wound healing efficiency based
on the experimental results of cell-based assays and animal wound models. The study targets to reveal wound healing
capacity of H-CM dressings, and provides a comparative data analysis, limitations of methods and discussions of H-CM
role in advancing the wound healing therapy.

Conclusions The data presented demonstrate that H-CM is a promising material for advanced wound healing and

regenerative medicine. These dressings possess proved in vitro/in vivo efficacy that highlights their strong clinical
potential and paves the way to further investigations of H-CM formulations within clinical trials.
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Background

Wound healing is one of the most pressing challenges in
modern regenerative medicine and tissue engineering
due to its complexity and a high risk of chronification,
especially when associated with diabetes [1-3]. The main
stages of wound repair are hemostasis, inflammation,
proliferation, and remodeling that are actively accom-
panied by immune events [4—8]. To provide the tissue
repair and regeneration along with standard therapeutic
strategies, novel biomaterials affecting biochemical, cel-
lular and immunological processes have been recently
introduced. These include self-pumping Janus-like dress-
ings [9], microneedles [10], nanofibers [11], electrospun
membranes [12, 13], and scaffolds [14, 15].

Hydrogels have emerged as effective materials for
wound management and treatment enhancing tissue
regeneration due to the composition of the hydrogel
network [16]. The ability of the 3D-hydrogel network to
retain moisture, its responsiveness to physical or chemi-
cal stimuli such as pH [17], temperature or light [18, 19],
biocompatibility and biodegradability [20-22], oxygen-
permeability [23, 24], bioadhesion [25, 26] ensure the
delivery and controlled release of encapsulated active
components in the target area. The active components
may consist of antibiotic or anti-inflammatory drugs
[27-29], nanoparticles [30, 31], therapeutic proteins, or
nucleic acids [32-36]. Hydrogel-based dressings were
demonstrated to modulate the macrophage response and
polarization, thus enhancing angiogenesis in diabetic
wounds [37, 38]. To facilitate immunostimulation and
to induce cell proliferation, vascular endothelial or basic
fibroblast growth factors were encapsulated into a hydro-
gel matrix [39, 40].

However, faster and more effective wound healing is
expected in the case of a treatment based on cell sec-
retome products rather than on single growth factors.
This is related to the complexity of the wound microen-
vironment and biochemical cascades involved in tissue
regeneration. Cell-derived conditioned medium (CM)
represents a cell secretome containing extracellular ves-
icles and a large panel of biomolecules including mRNAs,
active lipids, growth factors, growth-factor-binding pro-
teins, cytokines, chemokines, and other biomolecules
that enhance cell proliferation, migration, and angiogene-
sis [41-43]. It makes CM a cell-free alternative therapeu-
tic comparing to the already existing mesenchymal stem
cell-based wound treatments [44]. Hydrogels are ideal
matrices preserving the structure and function of bio-
molecules, suitable for encapsulation of hydrophilic bio-
molecules such as proteins and nucleic acids. Tuning the

hydrogel’s mesh size, it is possible to control its mechani-
cal strength and release rate of entrapped molecules.
Thus, loading of a hydrogel matrix with CM represents
a synergetic approach to promoting tissue regeneration,
with the creation of a depot. The latter ensures prolonged
release of CM components that finally improves the com-
pliance of the wound treatment and management [45].
In this systematic review, we aim to analyze the wound
healing efficiency of hydrogels loaded with CM (H-CM)
engineered to be used as dressings (Fig. 1). Here, we tar-
get the design, approaches exploited for H-CM fabrica-
tion and in vitro/in vivo functionality assessment of such
systems to reveal their wound healing capacity. We also
consider the advantages and limitations of the designed
methods, analyze the opportunities to use H-CM formu-
lations as effective wound dressings, and discuss a pos-
sibility of further clinical studies of the resultant product.

Methods

The systematic review was conducted according to the
guidelines of the Preferred Reporting Items for System-
atic Review and Meta-Analysis (PRISMA) [46, 47]. The
search was conducted via the PubMed and Scopus data-
bases using the PICO process and involved the study
quality assessment by the Collaborative Approach to
Meta-Analysis and Review of Animal Data from Experi-
mental Studies (CAMARADES). The systematic review
was not pre-registered.

Research question

Is wound contraction in animal models due to the appli-
cation of H-CM dressings more effective than treating
wounds with CM or hydrogels alone?

Search strategy

The literature search was performed by the Boolean
Operator using the “AND/OR” system and included all
articles published within the last 5 years before March
2024. The following search query was used to collect rel-
evant articles: (“conditioned” AND “medium” OR “secre-
tome”) AND (“hydrogel” OR “patch” OR “dressing”) AND
(“wound” OR “healing” OR “burn”).

Study selection

Two reviewers (S.S. & G.N.) independently screened the
titles and abstracts for all relevant studies to eliminate
duplicates and select articles by eligibility criteria.
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Fig. 1 The key stages of fabrication and preclinical studies of hydrogel-based dressings loaded with cell-conditioned medium intended for wound heal-

ing applications

Eligibility criteria
The identified articles were selected using the inclusion
and exclusion criteria. The inclusion criteria included
the following limitations: (1) stem cells secretome (non-
cellular components); (2) hydrogel; (3) in vivo experi-
ments (preclinical and/or clinical trials); (4) skin damage
(wounds, burns, ulcers, etc.); (5) topical application; (6)
English language; (7) 2019-2024 years of publishing. The
exclusion criteria were as follows: (1) reviews, editorials,
letters, books, conference papers and abstracts; (2) dupli-
cates; (3) insufficient data. After selecting the appropriate
studies based on the inclusion and exclusion criteria, a
final list of articles was analyzed in a qualitative manner.
To assure the quality of the selection process the PICO
elements were exploited. In this review, the types of par-
ticipants included all animal varieties/types irrespective
of the species, sex and age. Furthermore, the included
studies must have used full-thickness skin defect models
(wounds and burns). The interventions analyzed repre-
sented studies that used a hydrogel matrix with the stem
cell secretome as a wound dressing. These were the pri-
mary criteria for studies to be included. Studies with no
hydrogel matrix or no stem cell secretome were excluded.
As types of control studies with a blank control, those
on the wound treatment without a hydrogel matrix and/
or secretome as the control were selected to the review.
Studies that analyzed the wound contraction efficiency as

a wound size difference before and after treatment were
included to analyze a pre-defined outcome. Thus, the
effectiveness and the wound healing rate of the H-CM-
based dressings, compared to hydrogel dressings without
CM were evaluated.

Risk of bias and study quality assessment
The assessment of quality for the included studies
was performed using the CAMARADES checklist as
described elsewhere [48—-50]. The evaluation included the
following 10 criteria: (1) wound size calculation; (2) ran-
dom allocation to treatment or control; (3) appropriate
control; (4) blinded assessment of outcome; (5) appropri-
ate animal defect model; (6) use of anesthetic on animal
model where necessary throughout the study; (7) state-
ment of control of temperature; (8) compliance with ani-
mal welfare regulations; (9) peer-reviewed publication;
(10) statement of no potential conflict of interests. Each
“yes” of the following criteria was given a score=1, while
“no” or “unclear” carried a score=0. Based on the total
score of 10, studies with a score of 0-3 were recognized
as high risk studies, those with 4—6 as medium risk stud-
ies, and those with 7-10 as studies with a low risk of bias.
The assessment of the bias risk of the included stud-
ies was performed using the Robvis tool [51]. The fol-
lowing biases were considered in this evaluation tools:
selection bias (random sequence generation, allocation
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concealment), detection bias (blinding of participants
and outcome assessment), attrition bias (incomplete out-
come data), reporting bias (selective outcome reporting),
and a bias from other sources.

Data extraction and analysis

The author and year, hydrogel compounds, source of
cells, type of skin damage (full-thickness wound, diabetic
ulcer, burn), animal model species (mice, rat, sheep), out-
comes relevant to wound healing or scar improvement
were extracted independently by S.S. and G.N. using a
standardized tabular form. The data collection for the
descriptive analysis was arranged by using Microsoft
Excel 2021 (Microsoft Office, Microsoft Corporation,
Redmond, WA, USA) and the Origin Pro version 2018
software (OriginLab Corporation, Northampton, MA,
USA). Any difficulties and disagreements encountered
during the analysis were resolved by consulting the third
author (A.S.).

Results

Study selection and study characteristics

The initial search results included 163 articles: 78 from
PubMed and 85 from Scopus. After the removal of 59
duplicates, a total of 104 articles were brought to the
screening stage to exclude those that did not meet the
eligibility criteria. During the further stage of screening
the title and abstract, 52 articles were excluded from the
study, since they did not satisfy the inclusion criteria. The
remaining 52 articles were subjected to a full-text analy-
sis for the eligibility criteria. As a result of the analysis,
31 articles were found to be ineligible, in particular, 21
of them contained information only on in vitro studies,
2 articles contained only ex vivo experiments, 7 articles
did not use a hydrogel matrix, 14 did not use condi-
tioned stem cell medium, and 8 were review articles.
Some of the articles contained a combination of the listed

Records identified through
database searching (n = 163)

Records after duplicates removed
(n=104)

Records excluded using
titles and abstract (n = 52)

Full-text articles accesed for
eligibility
(n=52)

l-—

Studies included in systematic
review
(n=21)

Records excluded:
In vitro studies (n = 21)
Ex vivo studies (n = 2)

No hydrogel (n=7)

No CM (n = 14)
Review (n = 8)

|Included| |Eligibility| |Screening| |Identification|

Fig. 2 PRISMA flow diagram representing the selection process of the
publications included for the systematic review. Abbreviations used, CM
conditioned medium, n number of articles
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ineligibility criteria. Finally, 21 studies were selected for
the review. The process of searching and screening the
articles is summarized in Fig. 2.

Further, the articles were categorized for a better
understanding of the design and approaches exploited for
the fabrication and assessment of regenerating potency
of H-CM formulations, involving animal models, and
specific wound treatment protocols. Most of the stud-
ies represent proof-of-the-concept or concept validation
research and describe the hydrogel preparation, CM pro-
duction and identification of its active components, as
well as characterization of the prepared H-CM dressings
in vitro and in vivo (Table S1, Supporting Information).

Risk of bias and study quality assessment

According to the result of the CAMARADES quality
tool (Table S2, Supporting Information), 19 studies out
of 21 (90%) used wound size calculation while assessing
the healing efficiency. 8 studies (38%) reported random-
ization of the experimental and control group alloca-
tion. Only 2 included studies (9%) reported the blinded
assessment of outcomes. All studies were published in
peer-reviewed journals, used appropriate animal models
and controls, anesthetized where necessary throughout
the study, and stated compliance with the animal welfare
regulations. In conclusion, 90% of studies were scored as
low risk and 9% were at a medium risk of bias.

According to the Risk of bias (Robvis) tool (Figure S1,
Supporting Information), 8 of the 21 studies divided ani-
mals into the control and experimental groups randomly
and were therefore judged to have a low risk of selection
bias. However, none of the articles mentioned that the
studies were conducted by assigning, concealing, blind-
ing investigators (unclear risk of bias). Only 2 studies
reported blinding of the outcome assessment (low risk
of bias). All studies were free from missing data, selective
reporting bias, or other biases (low risk of bias). Hence,
the quality of the included studies was reliable and
acceptable.

Preparing hydrogels loaded with conditioned medium
Hydrogel engineering

The natural and synthetic biocompatible and biodegrad-
able polymers are widely used for hydrogel preparation.
During the last five years the classical hydrogel-forming
components have been gradually replaced by novel syn-
thetic substances and unusual products of natural origin
allowing designing various hydrogel-based delivery sys-
tems to be used as wound dressings (Fig. 3).

In detail, 70% of reviewed studies used mainly natu-
ral biopolymers or their chemically modified derivatives
such as alginate —33% [52-58], chitosan —19% [59], gel-
atin —14% [60], collagen —14% [61, 62], hyaluronic acid
—5% [63], and/or their combinations [64—66]. However,
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Fig. 3 A five-year retrospective flowchart on the design of wound dressings based on hydrogels loaded with cell-conditioned medium. The panel rep-
resenting the time point of 2021 is adapted from [52]

other natural biopolymers such as carrageenan [67],
fibrinogen [66], and chondroitin [68] were also found
in hydrogel formulations. Rare and unique components
of natural origin, e.g., silk fibroin [69], spider silk fusion
protein [70], decellularized extracellular matrix (ECM)
of porcine skin [71], synthetic polymers like cellulose or
its modifications [72], poly(vinyl alcohol) [67], short bio-
inspired octapeptide [52] or bioceramic materials (e.g.,
bioglass) [57] were introduced to design hydrogel-based
dressings. Within the selection analyzed, the final hydro-
gels represented mainly soft delivery systems [55, 57, 59,
61, 63-65, 70-72], or solid bandages [53], sponges [56,
62], membranes [58], or films [54, 66].

The hydrogel structure represents a three-dimensional
network which acts as a hydrophilic matrix ensuring
prolonged and continuous release of embedded pro-
teins used for tissue regeneration (Table 1). The hydrogel
structure is usually homogeneous, but some studies have
developed nano-, microstructure-bearing composites,
e.g., by using silk fibroin nanofibers [69], or by encap-
sulating CM components such as extracellular vesicles
(exosomes) [56]. Alternatively, multilayer constructs were
engineered using the particle-in-particle approach, e.g.,
alginate microparticles doped with proteins stimulating
wound healing, and drug-containing poly(lactic-co-gly-
colic) acid (PLGA) microspheres to sequentially deliver
bioactive molecules [57].

Hydrogels containing CM are commonly prepared in
their final “ready-to-use” form, however advanced for-
mulations such as in situ-forming grafted hyaluronic acid
hydrogels suggest simultaneous crosslinking and gelation
directly at the site of application [63]. To prepare a stable
hydrogel matrix, their chemical modification or physical
treatment is performed. Calcium-based ionic crosslink-
ing in alginate hydrogels [53-55, 57, 65] dominates over
photopolymerization [60, 63], temperature-induced [64,
69-71], freeze-thaw [67], solvent-induced gelation [52]
or covalent crosslinking [62, 68].

Some hydrogels designed were also characterized as
microporous materials [52, 53, 60, 68, 70]. The pore
diameter was changed by varying the substitution degree
and/or concentration of the gel-forming polymer and
was shown to affect the release rate of encapsulated
proteins of the cell secretome [60, 70]. The mean pore
diameter varied greatly from 22 pm to 200 pm. The struc-
ture-functional and biopharmaceutical properties such
as the protein release kinetics, hydrogel degradation, vis-
cosity and mechanical characteristics of the hydrogels
analyzed in the selected articles are shown in Table 1.
To enhance the efficiency of the hydrogel treatment,
“smart” thermosensitive hydrogels based on chitosan/
collagen/p-glycerophosphate hydrogel were also engi-
neered [64]. These matrices were nonfluid at 37 °C and
viscous at lower temperatures suggesting a possibility for
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more effective filling of various types of wounds, includ-
ing severe burns [64].

Isolation and proteome profiling of cell-derived
conditioned medium

In recent decades, numerous studies have demonstrated
the beneficial effects of the cell secretome on wound
healing [52, 54-56, 59, 64, 66—69, 71, 72], and the num-
ber of articles on this topic continues to grow rapidly.

According to the selection analyzed, primary cultures
and/or cultures from biobanks or commercially available
collections are used for the CM preparation. More than
50% of the selected articles used mesenchymal stem/
stromal cells (MSCs) as the secretome sources. Although
MSCs are considered to have low immunogenicity [73,
74], recently, there have been a growing number of arti-
cles demonstrating that MSCs do not have a full immu-
nological privilege in an immunocompetent allogeneic
host [75-77]. Therefore, the review also considers other
sources of CM including the following animal and human
cell types: murine macrophages, in particular RAW 264.7
cells [53, 57], human M2 macrophages derived from
monocytes THP-1 [58], dermal fibroblasts [62, 70] and
human keratinocytes HaCaT [70], and human embryonic
kidney (HEK) 293 cells [65].

The CM production is performed in the lab-scale
quantities and based on cell culturing under predeter-
mined conditions using supplemented cell culture media,
which may contain additional components to promote
cell polarization or growth factors [53, 60, 61]. Prior to
the secretome harvesting, an antibiotic component is
usually removed from the culture medium. Further, the
purification of the obtained medium using centrifuga-
tion or filtration is performed to eliminate undesired cell
debris. Afterward, the samples are concentrated with
a molecular weight cut-off (MWCO) filter. Then, cell
CM is prepared for long-term manipulations and stor-
age by freezing at -20 °C — -80 °C or freeze-drying [59,
60, 63, 65, 67, 69, 70]. However, during cell culturing
some unusual conditions can be exploited to enrich the
medium with cellular factors and bioactive molecules.
For example, hypoxic atmosphere [60], gamma-irradia-
tion [78], or transfected cells overexpressing antioxidant
proteins (nuclear factor erythroid 2-related factor 2)
[65] were used. The typical cell lines, their key charac-
teristics and specific cultivation parameters to prepare
cell CM are presented in Table 2. The resultant cell CM
product is characterized by a large diversity of its com-
position, although the proteome profiling and detailed
identification of its composition has been performed in
several studies [53, 54, 59, 60, 69]. The most representa-
tive groups of biologically active molecules detected were
growth factors, cytokines, chemokines and the others,
including the ECM components (Fig. 4).
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Encapsulation of conditioned medium into a hydrogel
matrix

To incorporate CM into a hydrogel network, the pre-
pared secretome product was directly mixed with hydro-
gel precursors or a preliminary prepared hydrogel and
allowed for gelation and/or mixing at pre-determined
time and temperature conditions [52, 55, 60-65, 67, 68,
70-72]. In several studies, crosslinking or photopolymer-
ization were performed after obtaining the H-CM mix-
ture [60]. In the case of solid dressings, the dry fabricated
patches or bandages were impregnated with a CM solu-
tion [53, 54, 66]. To produce sponge-like H-CM dress-
ings, CM was initially introduced into a sodium alginate
solution that was subsequently molded and freeze-dried
[56]. In the case of micro-/nanostructured systems, CM
was firstly encapsulated into sodium alginate microparti-
cles that were later embedded in the hydrogel matrix [57]
or directly encapsulated into nanofiber hydrogels [69].

In vitro studies of hydrogels loaded with cell-conditioned
medium

To evaluate the biocompatibility and cell proliferative
activity of H-CM formulations, a wide range of meth-
ods were used, as presented in Table 3. Thus, the wound
scratch was the most popular test for assessing the rate of
cell migration imitating the wound healing process [52,
54, 58, 60, 69, 70].

To assess the proliferative activity, the CCK8 method
with staining of living/ dead cells was used [57, 63, 64,
68, 69]. The articles considered also other crucial pro-
cesses that occurred in cells during wound healing, such
as collagen deposition [54, 58], tube formation [60, 63],
cell migration [54, 63], changes in cell phenotype [57,
63], fibroblast differentiation [69], oxidative stress [65],
inflammation and immune response [57, 61]. In general,
all methods showed good biocompatibility and low cyto-
toxicity with a remarkable cell survival and proliferation
for the hydrogels and H-CM formulations (Fig. 5).

In vivo wound healing potency and efficacy of hydrogels
loaded with cell-conditioned medium as wound dressings
Models of wound defects in animals

Wounds represent disruptions in the integrity of the
cutaneous barrier caused by surgery, trauma, or burns.
Based on the statistical study, only in 2014 acute wounds
resulted in 17.2 million hospital visits and this trend
seems to gradually increase [80].

To explore the efficacy of novel wound healing tools
and proposed strategies, animal models are actively
exploited. To replicate the wound healing process, the
majority of reviewed studies used small animals (mice,
rats). Around 66% of the articles presented experiments
on mice. Among them, 57% used a full-thickness cutane-
ous wound model, 36% reproduced diabetic ulcers, and
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Table 2 (continued)

Cell

Refer-

ence
(58]

Passage

Specific culture conditions

Cell line type

Cell type, morphology

Tissue

number

origin

Monocyte polarization to MO, M1, M2-macrophages adding PMA,

LPS, IFN-g, Il-4 and IL-13

Transformed cells, THP-1, ATCC

Monocyte/

Peripheral blood from an acute
monocytic leukemia patient

Human

macrophage

(2024) 15:371
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one article (about 7%) focused on the healing of third-
degree burns. The second most popular animal model
was a rat model (29%). Among the rat model studies, the
distribution was as follows: 83% - full-thickness wound,
17% (one article) - II-Illa-degree burns infected with
Staphylococcus aureus. Only one study using big ani-
mals (sheep) with a full-thickness skin wound model was
found [62].

An in vivo full-thickness acute wound model is the
most common one in this review, but other types of
wound models, including burns [59, 64] or skin flaps
[71] are also considered (Table 4). To reproduce an
acute wound, the animals were anesthetized, and full-
thickness skin wounds were created on their backs. A
biopsy punch, surgical scissors or pre-heated molds (in
the case of burn modelling) were applied. The existing
wound models varied by their mean size (from 5.8 mm to
14.9 mm) and geometry (Table 4). To avoid the pannicu-
lus carnosus muscle contraction, a splitting ring tightly
sutured to the skin around the wound by 4/0 suture was
utilized [55, 65].

Within the selected articles, two studies dealing with
difficult-to-heal burn wounds were analyzed. Rodents
such as mice and rats were used in these protocols. In
detail, mice were anesthetized, and an iron mold heated
to 95 °C was placed on the hairless back for 10 s to gener-
ate a burn with a square wound area (1.5 cm?). Wounds
were debrided by removing necrotic tissue with sterile
tweezers and washing with an aqueous solution of 3%
hydrogen peroxide. Then, using a sterile cotton swab, the
injured skin was covered with H-CM dressing, which was
changed twice a day. In the other study, burns were cre-
ated by applying a rectangular metal box with a square
bottom filled with pre-heated paraffin to the shaved back
skin of anesthetized rats for 30 s. The resultant wound
area was 4 cm? 12 h after the formation of the burn
wound, it was infected with Staphylococcus aureus as the
pathogenic flora [59].

In the majority of the selected studies, wound mod-
els have been created in healthy animals. However, it is
known that in related chronic diseases, in particular, in
diabetes, wound healing is not sufficient and in some
cases is accompanied by complications. A wound model
in a diabetic animal is also often used and presented in
selected articles [53, 57, 63, 70, 72]. For example, wounds
were induced in 10-12-week-old male C57BL/Ks] db/db
mice with leptin receptor deficient diabetes, having the
blood glucose level higher than 300 mg/dL [63]. Another
model included diabetes associated with hyperglyce-
mia (glucose level of 300 mg/dl), induced in 5-week- or
8-week-old mice by a single intraperitoneal injection of
streptozotocin (180 mg/kg —200 mg/kg) [57, 72]. To pro-
duce diabetes in 6-week-old C57BL/6 wild type mice, a
liver disease progression aggravation diet and a normal
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Source of conditioned medium

MSCs

Macrophages

VEGF
bFGF
EGF
PDGF
IGF
KGF

TGFB

HGF

IGF-II

FGF-7

GDNF
GM-CSF
M-CSF
B-NGF

SCF

SDFA1

NT-4

LIF
CXCL1/GROA
IL-2

IL-3

IL-4

IL-5

IL-6

IL-7

IL-9

Growth factors

IL-1A
IL-1B
IL-1RA
IL-2
IL-3
IL-4
IL-5
IL-6
IL-7
IL-8
IL-9
IL-10
IL-12(p40)
IL-12(p70)
IL-13
IL-15
IL-16
IL-17
IL-18
IFNA2
IFNG
TNFA
TNFB
MCSF
SDF1A
Eotaxin
GM-CSF
TRAIL
LIF
CXCL1/GROA
MIF

MIP-2

ccL
CTACK
IP-10
MCP-3
CCL/MCP-1
MIG
MIP-1A
MIP-1B
CCLS
CXCL10/1P-10
LIX
KC

IGFBP-1
IGFBP-2
IGFBP-4
IGFBP-6
IL-1RA

Serpin E1/PAI-1

M-CSFR
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IL-2RA

Cytokines

Molecular function
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SHH
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Developmental
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Fibronectin
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Fig. 4 (See legend on next page.)
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(See figure on previous page.)

Fig.4 The major components of the proteomic profiles of the cell-conditioned media produced and analyzed within the selected articles. The molecules
are scored by the incidence of their detection in the analyzed selection [53-55, 60, 61, 63-66, 69, 79]. The molecular function of the proteins is presented
according to the classification from the UniProt database. Abbreviations VEGF Vascular endothelial growth factor, bFGF Basic fibroblast growth factor, EGF
Epidermal growth factor, PDGF Platelet-derived growth factor, IGF Insulin-like growth factor, KGF Keratinocyte growth factor, TGFB Transforming growth
factor beta, HGF Hepatocyte growth factor, IGF-Il Insulin-like growth factor 2, FGF-7 Fibroblast growth factor 7, GDNF Glial cell line-derived neurotrophic
factor, GM-CSF Granulocyte-macrophage colony-stimulating factor, M-CSF Macrophage colony-stimulating factor, B-NGF Beta-nerve growth factor, SCF
Stem cell factor, SDF-1alpha Stromal cell-derived factor 1, NT-4 Neurotrophin-4, LIF Leukemia inhibitory factor, CXCL1/GROalpha Growth-related onco-
gene-alpha, /-2 Interleukin-2, /-3 Interleukin-3, /-4 Interleukin-4, IL-5 Interleukin-5, IL-6 Interleukin-6, IL-7 Interleukin-7, IL-8 Interleukin-8, /-9 Interleukin-9,
IL-Talpha Interleukin-1 alpha, IL-1beta Interleukin-1 beta, IL-1ra Interleukin-1 receptor antagonist, /L-10 Interleukin-10, IL-12(p40) Interleukin-12 subunit
beta, Il-12(p70) Interleukin-12 heterodimer, /L-13 Interleukin-13, /L-15 Interleukin-15, I[-16 Interleukin-16, IL-17 Interleukin-17, IL-18 Interleukin-18, IFN-al-
pha2 Interferon alpha-2, IFN-gamma Interferon gamma, TNF-alpha Tumor necrosis factor alpha, TNF-beta Tumor necrosis factor beta, TRAIL Tumor necrosis
factor-related apoptosis-inducing ligand, MIF Migration inhibitory factor, MIP-2 Macrophage inflammatory protein-2, CCL C-C motif chemokine ligand,
CTACK Cutaneous T-cell-attracting chemokine, MCP-3 Monocyte-chemotactic protein 3, CCL/MCP-1 Monocyte chemoattractant protein-1, MIG Monokine
induced gamma interferon, MIP-Talpha Macrophage inflammatory protein-1 alpha, MIP-1beta Macrophage inflammatory protein-1 beta, CCL5 C-C motif
chemokine ligand 5, CXCL10/IP-10 Interferon gamma-induced protein 10, LIX LPS-induced CXC chemokine, KC Keratinocyte-derived chemokine, IGFBP-1
Insulin-like growth factor-binding protein-1, IGFBP-2 Insulin-like growth factor-binding protein-2, IGFBP-4 Insulin-like growth factor-binding protein-4,
IGFBP-6 Insulin-like growth factor-binding protein-6, Serpin E1/PAI-1 Endothelial plasminogen activator inhibitor/ Plasminogen activator inhibitor-1, M-CSF
R Recombinant macrophage colony-stimulating factor, G-CSF Granulocyte colony-stimulating factor, ILl-2Ralpha Interleukin-2 receptor alpha, SHH Sonic

hedgehog chemokine, PDGF-BB Platelet-derived growth factor-BB homodimer, UC Umbilical cord: MSCs Mesenchymal stem/stromal cells

chow diet were applied for 2 weeks. Then, the blood
glucose of both groups was measured and compared to
determine the onset of diabetes [70].

Wound healing protocols

H-CM formulations have been investigated as wound
dressings in animal models using different protocols
(Table 4). Most commonly, the efficacy of dressings was
evaluated over a time-course of 7, 14 or 21 days. Sterile
formulations were applied once to the wound defect area
immediately after the surgery using a sterile transpar-
ent barrier (e.g., Tegaderm®), an antibiotic-impregnated
gauze or alternative tools to cover the wound and to
protect the hydrogels once installed [52-56, 61, 62, 67,
69, 70, 72]. At the same time, the patches were sutured
to skin around the wound or, after the hydrogel applica-
tion, the skin flap was replaced onto the wound site and
sutured with nylon to the wound edges [66, 71]. However,
in one of studies the experimental protocol assumed that
the hydrogel containing NRF2-CM should be deposited
on the wound only after injecting MSCs [65]. In several
studies, the wound dressing was changed once, daily or
at 2-3 day intervals during the given time-course. In
the case of advanced in situ formation or spray-filming
hydrogels, the treatment involved photopolymerization
and hydrogel-spraying stages, respectively [63, 68].

The animals were divided into experimental and con-
trol groups including positive and negative controls
respectively. Then, they were anesthetized and full-
thickness skin wounds were created on their backs. After
the treatment, the regions corresponding to the created
wounds were analyzed in each group. The wound closure
was monitored in the time-course, which also included
several intermediate time points to control the wound
contraction on days 0, 2, 4, 7 and 14 or 28 [54, 56, 61, 66].

Wound healing efficiency

To estimate the wound healing efficiency of H-CM, the
wound area was examined within a certain interval to
assess the wound closure rate macroscopically and/or
by means of the histological analysis and immunohisto-
chemistry staining [52-72]. Besides, the following param-
eters were monitored: abilities of cells to proliferate [71],
migrate, and form tubes [67]; neovascularization and
new vessel maturation [52, 54-56, 65, 68, 69, 72]; epider-
mis thickness [62]; keratinocyte migration and matura-
tion [55, 58, 70]; collagen deposition and density [56—60];
epithelialization [55-57, 59, 61, 62, 65, 68, 72]; fibroblast
migration [55]; granulation tissue formation [56, 61, 64,
67]; angiogenesis [54, 55, 60, 63, 67, 70]; inflammatory
cell (macrophage) infiltration [58, 59, 63-65, 67, 71, 72]
and expression levels of inflammation-related genes [53,
72]. Additionally, PCR-based estimation of cytokine or
chemokine expression [72] or LC-MS/MS analysis of
wound proteome was conducted [56]. Proliferation and
migration of endothelial cells, collagen deposition, neo-
vascularization, angiogenesis, and keratinocyte matura-
tion were observed in the case of all H-CM formulations.
The engineered dressings were demonstrated to decrease
the inflammatory response [72] and to modulate macro-
phage polarization to the M2-phenotype [57, 60, 63]. The
molecular mechanisms of wound healing due to appli-
cation of cell secretome-containing hydrogels included
Akt/mTOR and MAPK signaling pathway, downregulat-
ing the expression levels of proinflammatory agents such
as IL-1B, IL-6, CXCL-1, and CXCL-2, as well as expres-
sion of proteins involved in wound healing (e.g., Fga, Fgg,
F13al, Tnc, Argl, Anxa5, Collal, Dcn, EGFR, VEGE,
HGE, IGF and etc.) [56, 60, 67, 72]. The regenerated tis-
sues were characterized by the expression of CD31, a vas-
cular differentiation marker [53, 54, 57, 60, 70], Ki-67, a
cell proliferation marker [53, 64, 71], a-SMA indicating
the mature vessel-like structure [53, 54, 58, 69], P63, a
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Fig.5 Representative image of the main in vitro methods assessing effec-
tiveness on cell proliferation, cell migration, tube formation and collagen
deposition of hydrogels loaded with conditioned medium. The data were
normalized using percent relative abundance. The control bar represents
the data collected in the case of samples that did not contain conditioned
medium. The data is shown as mean +standard deviation; *p<0.05, ac-
cording to two sample t-test. Abbreviations used, H-CM hydrogel loaded
with cell-conditioned medium

unique marker of the epidermal stem cells [66], collagen
L, collagen III [57] and cytokeratins [58], whereas CD206
expression in the treated tissues indicated the presence
of M2-macrophages [58, 63]. The cellular-molecular
response induced by each developed formulation is sum-
marized in Table S3, Supporting Information.

Despite the variety of the techniques used, the visual
monitoring of wound contraction remains one of the
most important evaluations to determine the efficiency
of the treatment applied. The remaining wound area at a
specific time point was quantitatively calculated to assess
the wound closure rate as a percentage of the wound
region normalized to that of day 0, using an image pro-
cessing software [54]. The main factors for assessing the
effectiveness of wound healing are its size and healing
time. The healing time was described as the time required
for the complete reepithelialization of the wound [64—66,
71]. In the majority of studies the wound contraction
rate was investigated by taking photographs and adjust-
ing them to a standard scale, using an image processing
software. The analysis of the selected articles has dem-
onstrated that H-CM effectively promoted regeneration
in acute and chronic wounds (Fig. 6). H-CM dressings
showed the highest efficiency of wound contraction in
both healthy and diabetic groups, especially in the early
stages (6—8 days). These results are consistent with the
in vitro experiments showing the increased proliferative
and angiogenesis activity of H-CM formulations.

Almost all the articles we found describe the positive
outcomes from applying H-CM onto the skin injury area.
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The most frequently observed effects involved: enhanced
cellular activity of dermal fibroblasts and endothelial
cells, significantly accelerated wound contraction and
promoted wound healing, reduced inflammation with no
fibrotic scar formation, and enhanced re-epithelialization
and angiogenesis.

Discussion

Hydrogels have demonstrated a great potential as dress-
ings for the treatment of skin injuries [81-85], and for
tissue or 3D scaffold engineering [86, 87]. Their final
state can be tuned depending on the desired applica-
tion. A variety of soft and solid hydrogel-based dressings
have been developed during the last five years. Cell-
derived CM has been added to hydrogel formulations,
thus combining a hydrogel matrix and the cell secretome
to enhance skin regeneration capacity and wound heal-
ing [42, 53, 60, 88]. Hydrogels are simple to prepare, and
their mechanical properties, skin adhesion, porosity, rhe-
ological characteristics, and release kinetics can be eas-
ily adapted and controlled [88, 89]. Cell-CM represents a
large ensemble of proteins of different molecular weights
(from 5 to 504 kDa) and molecular functions [90], as well
as exosomes [91]. These are mainly hydrophilic and read-
ily encapsulated into a hydrogel network during cross-
linking or polymerization. To tackle the prolonged and/
or controlled release of proteins, micro-/nanostructured
systems can be designed [56, 57].

However, scaling up the production of a hydrogel is
challenging, especially using such components as the
ECM. These components have a great composition vari-
ability, which may cause difficulties in the standardiza-
tion of the technology and the final product. Moreover, it
was found that ECM hydrogels loaded with ASC-derived
CM did not influence wound healing in a skin flap rat
model as compared to the control groups [71]. It may be
explained by several reasons. First, the therapeutic effect
is influenced by the CM dosage in the hydrogel. We sug-
gest that this limitation may have taken place, since the
CM concentration used in that study was as small as one-
eighteenth of the volume. It is likely that this amount may
not have been sufficient to produce a clear therapeutic
effect, especially considering that most of the studies pre-
sented in this review used one-to-one ratios of CM and
a hydrogel by volume. Second, the retention of the ECM
hydrogel remained unclear. It was hard to distinguish the
ECM hydrogel and native donor collagen fibers micro-
scopically in the histological samples. Moreover, the
release of growth factors could not be measured in the
in vivo model. Third, an important limitation was rather
rapid wound healing in the control group of rats, which
may affect the beneficial influence of H-CM. The authors
suggested that it might be more relevant to use rats with
defective wound healing (e.g., diabetic animals) or larger
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Fig. 6 The quantitative analysis of wound contraction rate in vivo. The
data represent healthy and diabetic animal models with relative healing
effectiveness in control and target (treated with hydrogel and hydrogel
loaded with cell-conditioned medium) groups after 6-8 and 12-14 days
of wounding. The data is shown as mean=standard deviation; *p<0.1,
according to one-way ANOVA test. Abbreviations used, Ctrl control, H-CM
hydrogel loaded with cell-conditioned medium, H hydrogel

mammals such as pigs, which are more similar to humans
in regard to wound healing.

Other important limitations are related to the cell CM
therapeutics that lacks standardization of bioprocess-
ing, and information on its composition and stability.
For instance, the MSC secretome is characterized by the
potential difference in its composition depending on the
type, origin and localization of donor cells from which
the secretome was obtained. This systematic review pres-
ents CM produced by primary cultures obtained from
the waste fat of patients who had undergone liposuction
[60, 71], from mice and human bone marrow [53, 54],
from the umbilical cord of newborn infants delivered by
caesarean sections [55, 59, 63, 64, 69, 72], from skin tis-
sue samples after abdominoplasty or face-lift surgery [56,
61], from nasal septum and inferior nasal concha of rats
[66]. Other sources of CM included cell lines cultivated
or purchased from commercial companies such as RAW
264.7 cells (a murine-derived macrophage cell line), L929
cells (an areolar-derived fibroblast cell line), hTERT
immortalized adipose-derived mesenchymal stem cells
(ADMSC, SCRC-4000, (American type culture collection
(ATCCQ)) [52], stable HEK-293 cell line expressing NRF2
(NRF2-HEK-293) [65], human telomerase reverse tran-
scriptase (WTERT)-immortalized ADMSCs (SCRC-4000)
[70], THP-1, human monocyte-like cells (ATCC) [58].
We propose that such a large variation in cell sources and
their potential differences in secretomes imposes certain
difficulties on the process of standardizing the composi-
tion of a therapeutic product used in the wound treat-
ment. The secretome contains>>300 of proteins with
different activity [92] (according to LC-MS/MS data of
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CM profiling [67, 70, 93]), and it seems quite difficult to
analyze the target effect of each of them on tissue regen-
eration. Therefore, the regeneration and wound healing
capacity is explained by synergy of all CM components.
However, the existing research on the development of
hydrogels for their use as wound dressings is still repre-
sented by numerous proof-of-concept studies. It is inter-
esting to note that, within the last five years, there have
been no studies describing the ongoing clinical trials of
the H-CM dressings. Only one paper mentioned the start
of the MARSYAS II trials involving a total of 132 patients,
assessing the efficiency of the APOSEC secretome-based
treatment, but this study is in progress and has not yet
been completed [78, 94].

To further implement hydrogel-based dressings and
efficiently translate them into clinics, the manufacturing
technology should be optimized to result in the GMP-
compliant and “ready-off-the shelf” final product [56].
The technique used should meet the sterility require-
ments. In particular, the possibility applying the modern
approaches such as 3D bioprinting or electrospinning
should be explored in the future. These techniques may
represent promising alternatives to already existing
hydrogel production strategies requiring multiple stages
[95-97]. To analyze the CM’s wound healing properties
after the incorporation into a hydrogel matrix, a greater
number of studies should be conducted with the focus
on disease-specific skin injuries (diabetic wounds, ulcers,
and burns), involving complete in vitro/in vivo evalu-
ation. For this purpose, modern microfluidic wound-
on-a-chip or healing-on-a-chip models can be exploited
[98-100]. Moreover, to reduce the laboratory costs asso-
ciated with in vivo studies, alternative ex vivo wound
models are being developed [101-103], and the possibil-
ity of the use of other small animal models, e.g., leech,
and specific conditions for wound healing are still being
discussed [104].

Conclusions

The development of hydrogel-based dressings for the
treatment of skin defects and wounds is a dynamic area,
with hundreds of publications. This multidisciplinary
research field involves chemical engineering, regen-
erative medicine and biotechnology. In this review, we
provide a systematic analysis of the key points on the
design, structural-functional properties, and in vitro/
in vivo assessment of H-CM dressings for the wound
treatment. The cell secretome embedded into hydro-
gel matrices is an effective tool to heal skin lesions and
wounds. In the future, more studies exploring novel
approaches for H-CM fabrication, or harmonized proto-
cols for animal studies are likely to be published. We also
expect further translation of the designed dressings into
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clinical research to validate the efficiency and safety of
the designed regenerative technology.

Abbreviations
3D Three-dimensional

ADMSC Adipose-derived mesenchymal stem cells
Alg-Ecm Alginate- extracellular matrix

ANOVA Analysis of variance

APOSEC Secretome of apoptotic peripheral blood cells
ASP Acellular skin patch

ASC Adipose stromal cell

(@] Conditioned medium

CCK8 Cell Counting Kit-8

ECM Extracellular matrix

H-CM Hydrogel loaded with conditioned medium
hTERT Human telomerase reverse transcriptase
LCMS/MS  Liquid chromatography—-mass spectrometry
MARSYAS Marshall system for aerospace system simulation
MSCs Mesenchymal stem/ stromal cells

MWCO Molecular weight cut-off

NRF2 Nuclear factor erythroid 2-related factor 2

PCR Polymerase chain reaction

PLGA Poly (lactic-co-glycolic acid)
RPMI Roswell Park Memorial Institute
PVA Polyvinyl alcohol
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