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Abstract
The use of mesenchymal stem cells (MSCs) from perinatal tissue sources has gained attention due to their 
availability and lack of significant ethical or moral concerns. These cells have a higher proliferative capability than 
adult MSCs and less immunogenic or tumorigenesis risk than fetal and embryonic stem cells. Additionally, they do 
not require invasive isolation methods like fetal and adult MSCs. We reviewed the main biological and therapeutic 
aspects of perinatal MSCs in a three-part article. In the first part, we revised the main biological features and 
characteristics of MSCs and the advantages of perinatal MSCs over other types of SCs. In the second part, we 
provided a detailed molecular background for the main biomarkers that can be used to identify MSCs. In the final 
part, we appraised the therapeutic application of perinatal MSCs in four major degenerative disorders: degenerative 
disc disease, retinal degenerative diseases, ischemic heart disease, and neurodegenerative diseases. In conclusion, 
there is no single specific molecular marker to identify MSCs. We recommend using at least two positive markers 
of stemness (CD29, CD73, CD90, or CD105) and two negative markers (CD34, CD45, or CD14) to exclude the 
hematopoietic origin. Moreover, utilizing perinatal MSCs for managing degenerative diseases presents a promising 
therapeutic approach. This review emphasizes the significance of employing more specialized progenitor cells 
that originated from the perinatal MSCs. The review provides scientific evidence from the literature that applying 
these progenitor cells in therapeutic procedures provides a greater regenerative capacity than the original 
primitive MSCs. Finally, this review provides a valuable reference for researchers exploring perinatal MSCs and their 
therapeutic applications.
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Biological facts
Mesenchymal stem cells (MSCs) are multipotent regen-
erative cells that can differentiate into several tissue cells 
[1, 2]. They have been designated the name “multipotent 
mesenchymal stromal cells” by the International Soci-
ety for Cellular Therapy (ISCT) [2]. However, the term 
“MSCs” remains the most widely used name in literature. 
According to the Mesenchymal and Tissue Stem Cell 
Committee of the ISCT, human MSCs must exhibit the 
following standards to be considered for scientific inves-
tigations and/or pre-clinical trials:

 	• They must be plastic-adherent.
 	• They must express the following cell surface antigen 

biomarkers: CD73 (ecto 5’ nucleotidase), CD90 
(Thy−1), and CD105 (endoglin).

 	• They must lack the expression of hematopoietic 
antigens. These include the following: the 
hematopoietic progenitor cells marker CD34; the 
pan-leukocyte marker CD45; the monocyte and 
macrophage markers CD14 and CD11b; the B-cell 
markers CD19 and CD79α.

 	• They must display trilineage differentiation in vitro. 
Thus, the cells can differentiate into osteoblasts, 
chondroblasts, and adipocytes in culture.

 	• In addition, the following fifth criterion of MSCs has 
been emphasized in the literature:

 	• They must be able to show a fibroblastoid 
morphology [1, 3, 4].

Despite sharing the aforementioned standards, human 
MSCs can still be classified into three types based on 
their source tissue. These include (i) adult MSCs, isolated 
from adult tissues, especially bone marrow (BM) and 
adipose tissue; (ii) fetal MSCs, isolated from collected 
samples of amniotic fluid or fetal tissues after terminated 
pregnancies; and (iii) perinatal MSCs, which are isolated 
from the placentome tissues (i.e., umbilical cord and 
placenta membranes). Perinatal MSCs can be harvested 
from five distinct regions of the placentome (Fig.  1), 
including the umbilical cord (UC) lining membrane, 
Wharton’s jelly (WJ), The junction between the UC and 
placenta, the fetal chorion, and the maternal part of the 
placenta (i.e., Decidua basalis) [1].

The MSCs from perinatal sources have attracted the 
attention of many researchers due to their abundance in 
easily accessible tissue sources without significant ethi-
cal and safety concerns. For example, perinatal MSCs 
do not carry major ethical concerns like embryonic stem 
cells (ESCs). The primary ethical conflict associated 
with ESCs consists of using human embryos to obtain 
these cells [5, 6]. Therefore, the ethical debate surround-
ing the ESCs revolves around whether it is justifiable to 
develop new cell-based therapies at the cost of harming 
human embryos. In contrast, MSCs derived from perina-
tal sources do not raise significant ethical concerns. They 
only require institutional ethical approval along with the 
consent of the mother or guardian to use the discarded 
placentome tissue. Additionally, perinatal MSCs do not 
need invasive harvesting procedures, unlike MSCs from 
adult sources such as bone marrow and adipose tissue. 
The invasive procedures required to harvest adult MSCs 
can cause tissue damage, discomfort or pain to the donor, 
and place him at risk. Therefore, harvesting adult MSCs 
requires more ethical and safety considerations than the 
perinatal MSCs.

Perinatal MSCs have numerous advantages over MSCs 
from other sources (Fetal and adult), making them the 
center of attention for both experimental research and 
therapeutic applications. These benefits include:

 	• Higher proliferation capability than adult MSCs [7].
 	• Lower immunogenicity than adult MSCs with the 

ability to ameliorate immune response [7, 8].
 	• Less likely to have mutations than adult MSCs since 

they are immature cells, which reduces the risk of 
tumorigenesis [4, 7, 9].

 	• They do not require invasive isolation methods like 
fetal and adult MSCs [1, 9].Fig. 1  Illustration of the five different regions of the placentome to isolate 

perinatal MSCs. These are cord lining (CL), Wharton’s jelly (WJ), cordplacen-
ta junction (CPJ), the chorion (Ch), and the maternal placenta (P). Created 
in https://BioRender.com
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 	• They have no ethical issues like fetal and adult MSCs 
since placentome tissues are considered medical 
waste that is discarded after birth [1, 9, 10].

 	• large-scale availability due to the abundance of 
placentome tissues that yield a high number of cells 
[4, 7].

Molecular biomarkers
Numerous surface biomarkers have been used to iden-
tify MSCs. However, there is currently no single marker 
that can be used specifically to identify MSCs. Herewith, 
we discuss the most recommended and most frequently 
adopted biomarkers in the literature for MSC identifica-
tion. These include the three recommended markers by 
the ISCT committee (CD73, CD90, & CD105), the three 
markers of stemness, known as the pluripotency triad 
(Sox2, Oct4, & Nanog), and two widely used integrin bio-
markers (CD29 & CD49f). A summary of the structural 
and functional characteristics of these markers is pro-
vided in Table 1.

Cluster of differentiation 73 (CD73, NT5E)
This is a membrane-bound enzyme (ectoenzyme) that is 
known as ecto-5’-nucleotidase (NT5E) and is encoded by 
the NT5E gene [11, 12]. It degrades extracellular AMP 
into adenosine [11]. The successive enzymatic activi-
ties of ectonucleotidases CD39 and CD73 form the main 
pathway for hydrolysis of extracellular ATP into adenos-
ine (Fig. 2). CD39 hydrolyzes ATP into AMP, and CD73 
further converts AMP into adenosine [13]. Therefore, 
CD73 is considered an immune modulator since it helps 
convert the pro-inflammatory ATP molecule into the 
immune suppressive nucleoside adenosine [11, 13].

As noted in the previous section, CD73 has been rec-
ognized by the ISCT as one of the three surface markers 
required to define the MSCs [1, 2]. However, it has been 
revealed that CD73 is unequally expressed among differ-
ent MSC populations, with MSCs from perinatal sources 
(especially from the UC) having higher expression lev-
els of CD73 than MSCs from adult sources (including 
BM and adipose tissue) [14]. This heterogenous pattern 
of CD73 expression may explain the inconsistency in 

Table 1  Summary of the most commonly used biomarkers to identify MSCs from perinatal tissues
# Marker Name Location Function Explanation References
1 CD73

(NT5E)
Ecto-5’-nucleotidase Anchored to the 

external surface 
of the cell 
membrane

Ectoenzyme
(Degrades extracellular AMP into adenosine)*

Recognized 
by the ISCT 
committee

[1, 2, 
11–14]

2 CD90
(Thy-1)

Thymocyte differentia-
tion antigen 1

Anchored to the 
external surface 
of the cell 
membrane

Cell surface receptor that binds to various ligands (e.g., 
integrins, syndecans, & CD97). The activation of this 
receptor stimulates signaling pathways that are mainly 
involved in cell adhesion and migration.

Recognized 
by the ISCT 
committee

[15–22]

3 CD105
(TGF-βR3)

Endoglin
or
Transforming growth 
factor β receptor type 3

Transmembrane 
glycoprotein

Auxiliary coreceptor for TGF-β1 and β3 ligands** Recognized 
by the ISCT 
committee

[23–27]

4 Sox2 Sex determining region 
Y-box 2

Nuclear tran-
scription factor

interacts with Oct4 to form a binary complex that 
activates the transcription of several pluripotent genes 
and inhibits the transcription of several differentiation 
genes.

Member of the 
pluripotency 
triad

[28–33]

5 Oct4 Octamer-binding tran-
scription factor 4

Nuclear tran-
scription factor

1- interacts with Sox2 to form a binary complex that 
activates the transcription of several pluripotent genes.
2- interacts with Nanog to form a complex that acti-
vates the transcription of the Dnmt1 methyltransferase 
gene.

Member of the 
pluripotency 
triad

[9, 34, 
46–49]

6 Nanog Nanog
(from Irish mythology 
Tir nan Og = Land of 
eternal youth)

Nuclear tran-
scription factor

Interacts with Oct4 to form a complex that activates 
the transcription of the Dnmt1 methyltransferase 
gene.***

Member of the 
pluripotency 
triad

[35–49]

7 CD29
(ITGβ1)

Integrin beta 1 Transmembrane 
protein

associates with different integrin alpha subunits to 
form integrin complex receptors that contribute to 
various biological processes in different cells. In MSCs, 
it is mainly involved in cell adhesion and migration.

Widely used 
marker for peri-
natal MSCs

[50–60]

8 CD49f
(ITGA6)

Integrin alpha 6 Transmembrane 
protein

Sustains stemness of the cell by downregulating p53 
expression.****

Widely used 
marker for peri-
natal MSCs

[61–65]

*See Figure 2 for the detailed function of CD73. **See Figure 3 for the detailed function of CD105. ***See Figure 4 for the detailed function of Nanog. ****See Figure 5 
for the detailed function of CD49f (ITGA6)
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regenerative potentials among different MSCs. For exam-
ple, MSCs expressing high levels of CD73 promote sig-
nificantly better cardiac repair in infarcted murine hearts 
than MSCs with low levels of CD73 [14].

Cluster of differentiation 90 (CD90, Thy-1)
This protein is anchored to the outer surface of the 
plasma membrane by a glycosylphosphatidylinositol 
(GPI) segment [15, 16]. It is also known as thymocyte dif-
ferentiation antigen 1 (Thy-1) because it was initially dis-
covered in murine thymocytes [17]. It is associated with 
many biological functions, including cell death (apopto-
sis), cell adhesion, cell proliferation and migration, and as 
a pluripotency marker for stem cells [16, 18].

CD90 is expressed in different types of stem cells, 
including cancer stem cells (CSCs) [19, 20], hematopoi-
etic stem cells (HSCs) [21, 22], and MSCs [1, 2, 9]. There-
fore, when using CD90 to identify MSCs, it is necessary 
to use additional markers to distinguish them from other 
stem cell populations. For example, CD34, a common 
marker for HSCs, is often used with CD90 to differenti-
ate between MSCs and HSCs. HSCs are CD34+/CD90+, 
while MSCs are CD34-/CD90+ [18, 22].

Cluster of differentiation 105 (CD105, Endoglin)
This is a transmembrane glycoprotein commonly known 
as endoglin because it is predominantly expressed in the 
endothelial cells of blood vessels. Despite being initially 
identified in a lymphoblastic leukemia cell line, it has 
been exclusively investigated in vascular endothelial cells 
[23, 24]. Endoglin (CD105) is composed of three distinct 
domains. These include (i) an extracellular tripeptide 
domain, which is heavily glycosylated; (ii) a hydrophobic 
transmembrane domain; and (iii) an intracellular domain, 
which is rich in serine/threonine phosphorylation sites 
[24]. The intracellular domain is involved in modulating 

response only, and it does not commence a signaling cas-
cade [25].

Endoglin functions as an auxiliary receptor or corecep-
tor since it is a component of the receptor complex for 
the transforming growth factor beta (TGF-β) superfamily 
ligands. This receptor complex is made of three types of 
receptors. These are TGF-β receptor type 1 (TGF-βR1), 
TGF-β receptor type 2 (TGF-βR2), and CD105 (endo-
glin). Endoglin is also known by some investigators as 
TGF-β receptor type 3 (TGF-βR3). CD105 is first asso-
ciated with receptor TGR-βR2. This association allows 
the binding of TGF-β 1 or 3 ligands (Fig.  3). The bind-
ing of these ligands to the association will then activate 
TGF-βR2 to phosphorylate TGF-βR1. Phosphorylation 
of TGF-βR1, also known as activin receptor-like kinase 
(ALK), will initiate intracellular downstream signaling 
cascades. There are two downstream signaling pathways 
that are activated by two different subtypes of TGF-βR1. 
These include ALK1 or ALK5 kinase (Fig. 3) [24–26].

Endoglin is expressed in various cell types, includ-
ing vascular endothelial cells, MSCs, HSCs, tumor-
associated fibroblasts, and epithelial cancer cells [23, 24, 
26]. Additionally, its expression levels are significantly 
elevated in the highly proliferating than in low prolif-
erating and quiescent cells. Therefore, it is a predomi-
nant marker of both tumorigenesis and stemness. For 
example, MSCs expressing CD105 have a higher prolif-
eration rate and better colony formation than MSCs not 
expressing CD105 [27]. In summary, similar to CD90, 
CD105 is a marker of proliferation and cannot be used 
as a single marker to identify MSCs. Additional mark-
ers are required to confirm the stemness of the cells (i.e., 
CD73 + and CD90+) and to exclude the hematopoietic 
origin (i.e., CD45− and CD34−).

Fig. 2  Role of CD73 in the hydrolysis of extracellular ATP into Adenosine. Created in https://BioRender.com
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Sex determining region Y – Box 2 (Sox2)
This nuclear transcriptional factor is essential for the 
maintenance and stemness of different types of stem 
cells [28]. It is one of three critical transcription factors 
that are referred to as the pluripotency triad of stem 
cells. These are Sox2, Oct4, and Nanog [29, 30]. Sox2 is a 
core transcription factor in embryonic stem cells (ESCs) 
and MSCs from perinatal and adult sources [28–31]. 
It is expressed at a higher level in MSCs from perinatal 
sources than MSCs in adult sources (BM and Adipose 
tissue). However, this level of expression is not as high as 
the expression level in ESCs [28].

Sox2 interacts with Oct4 to form a binary complex that 
activates pluripotent genes and represses differentiation 
genes [32]. It has been reported that Sox2 is essential for 
maintaining the self-renewal capability of MSCs, and 
without Sox2, the cells may lose their stemness [30]. In 
fact, the expression level of Sox2 gradually decreases as 
the MSC passaging number increases. Additionally, the 
knockdown of Sox2 inhibits proliferation and signifi-
cantly reduces the colony-forming ability of MSCs [30]. 
On the other hand, induced expression of Sox2 in aged 
bone marrow-derived MSCs (BM-MSCs), which dis-
play flattened morphology and decreased proliferation, 

restored their normal fibroblastoid morphology and pro-
liferation rate [33]. It is anticipated that higher expression 
of Sox2 is associated with greater stemness, increased 
proliferative potential, and better cell migration and 
adhesion in perinatal MSCs [31].

Octamer-binding transcription factor 4 (Oct4, POU5F1)
This is an important transcription factor found in both 
ESCs and MSCs. It is involved in sustaining the self-
renewal ability of undifferentiated stem cells [9, 34]. It is 
the first and most used marker for identifying ESCs [34]. 
However, it is also expressed as a marker in perinatal 
MSCs isolated from WJ and the amniotic membrane of 
the placenta [9].

Nanog
Nanog is a homeobox transcription factor that is a mem-
ber of the pluripotency triad (Sox2, Oct4, & Nanog) 
[35]. It is a 305 amino acids (AAs) long protein with 
a homeobox domain in the middle that spans 60 AAs 
from AA 95 to AA 154 [35]. In addition, it contains an 
N-terminal region that constitutes 94 AAs and is rich 
in serine residues (17 serine residues in its N-terminal). 

Fig. 3  Mechanism of action of CD105 through TGF-β receptor complex. CD105 is first associated with receptor TGR-βR2. This association allows the 
binding of TGF-β 1 or 3 ligands to the complex. The binding of these ligands to the receptor complex will then activate TGF-βR2 to phosphorylate TGF-
βR1. Phosphorylation of TGF-βR1, also known as activin receptor-like kinase (ALK), will initiate two intracellular downstream signaling pathways that are 
activated by two different subtypes of TGF-βR1 (ALK1 or ALK5). Created in https://BioRender.com
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The C-terminal region contains a tryptophan repeating 
domain where every fifth residue is a tryptophan (resi-
dues 200, 205, & 210). The tryptophan repeating domain 
is essential for Nanog’s interaction with other pluripo-
tency factors and for mediating Nanog’s dimerization 
[36, 37]. It is important to note that in addition to the 
original NANOG gene on chromosome 12, there are 11 
NANOG pseudogenes marked as P1 to P11 [35, 38]. The 
first pseudogene (NANOGP1) results from a tandem 
duplication of the original NANOG gene and has a high 
homology to the original gene. The remaining pseudo-
genes (NANOGP2-NANOGP11) are located on different 
chromosomes and show 85–90% homology to the origi-
nal NANOG gene [35, 38].

Nanog’s name is derived from the Celtic Irish mythol-
ogy “Tir nan Og,” which means the land of ever young, 
where people never age [39, 40]. This explains the main 
role of Nanog in stem cells, which includes maintaining 
the stemness and self-renewal of these cells and retaining 
them in an undifferentiated state [35]. Nanog is expressed 
in different types of stem cells, including ESCs [39, 40], 

CSCs [35, 38], and both perinatal [41–43] and adult [44, 
45] MSCs.

Nanog is a key factor in maintaining the self-renewal of 
perinatal MSCs by preserving stemness, delaying senes-
cence, and increasing the expression of both Sox2 and 
Oct4 [28]. It is important to clarify that Nanog, along 
with Sox2 and Oct 4, are forming a pluripotency triad 
that is essential for maintaining self-renewal and pluri-
potency of ESCs. In MSCs, this triad is also speculated 
to play similar roles in maintaining MSCs self-renewal 
and retaining them in an undifferentiated state [46]. This 
is evident by the fact that overexpression of these factors 
promotes the proliferation rate and enhances the colony 
formation of MSCs [47]. In contrast, the knockdown of 
these factors significantly reduces the growth rate and 
multipotency of MSCs [48, 49]. Furthermore, it has 
been established that Nanog functions by activating the 
repressors and suppressing the activators of differentia-
tion [35]. Therefore, Nanog inhibits the differentiation of 
various types of stem cells.

One of Nanog’s suggested mechanisms of action is 
that it collaborates with Oct4 to suppress the expression 
of genes that promote differentiation and senescence by 
enhancing DNA methylation. It has been revealed that 
both Nanog and Oct4 can upregulate the expression of 
a significant DNA methyltransferase gene called Dnmt1 
by binding directly to its promoter region [46]. In turn, 
Dnmt1 will promote DNA methylation and inhibit the 
transcription of p16, p21, and other senescence genes, 
ultimately retaining cell proliferation and inhibiting dif-
ferentiation (Fig. 4).

Cluster of differentiation 29 (CD29, ITGβ1)
This is a transmembrane adhesion molecule that is also 
known as integrin beta 1 (ITGβ1) [50, 51]. This molecule 
has four isoforms, and it can be associated with differ-
ent integrin alpha subunits to form integrin complexes 
that bind extracellular adhesion proteins, including col-
lagen, laminin, and fibronectin [52, 53]. CD29 is widely 
expressed in different types of cell lineages and in both 
progenitor and differentiating cells [52].

Previous studies showed that this glycoprotein bio-
marker is crucial for the survival, proliferation, and 
migration of MSCs. Interrupting interactions between 
ITGβ1 and extracellular matrix proteins can result in 
MSC death [54]. On the other hand, overexpression 
of ITGβ1 increases MSC survival and improves their 
regenerative efficacy [55]. Ode et al. 2011 reported that 
decreased CD29 expression results in reduced migra-
tory capacity of MSCs [51]. Furthermore, Ip et al. (2007) 
found that CD29 blockade reduces the migration and 
engraftment accumulation of MSCs into infarcted sites of 
ischemic murine hearts [56].Fig. 4  Illustrating diagram for a suggested mechanism of action of Nanog 

in maintaining self-renewal of MSCs
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Several previous studies used CD29 to identify MSCs 
from perinatal tissues [4, 57–60]. Brown et al. (2019) 
showed that more than 99% of MSCs isolated from the 
five different regions of the perinatal tissues (Fig.  1) 
express CD29 [1]. Additionally, researchers used CD29 as 
a marker to investigate the impact of maternal age on the 
frequency and distribution of perinatal MSCs within dif-
ferent areas of the placenta [59] and the UC [58]. In con-
clusion, to define MSCs using CD29, it is necessary to use 
at least two additional markers. First, a positive marker 
is needed to confirm the stemness of the cells, such as 
CD73 or CD90. Second, a negative marker is required 
to exclude the hematopoietic origin of the cell, such as 
CD34 or CD45.

Integrin alpha 6 (ITGA6, CD49f)
This is another transmembrane protein that functions 
as a cell adhesion receptor [61, 62]. This cell surface bio-
marker is expressed in about 35 different populations of 
stem cells, indicating its integral role in stem cell biology, 
which maintains the self-renewal mechanism of stem 
cells [62]. It has been identified in both adult and peri-
natal MSCs. Nieto-Nicolau et al. (2020) reported that the 
expression of ITGA6 can indicate the progenitor poten-
tial of BM-MSCs since BM-MSCs that express higher lev-
els of ITGA6 have higher clonogenicity, migration, and 
differentiation potentials [63]. Comparable to these find-
ings, Al-Obaide et al. (2022) revealed that higher expres-
sion of ITGA6 is correlated with higher clonogenicity and 
shorter doubling time in perinatal MSCs [61]. Therefore, 
the expression of ITGA6 is necessary for the proliferation 
and self-renewal of MSCs. Perinatal MSCs isolated from 
the WJ in the UC had higher expression levels of ITGA6 
than MSCs isolated from the placenta [61].

The suggested mechanism of action for ITGA6 is sum-
marized in Fig. 5 below. It has been reported that Oct4 
and Sox2 transcription factors play positive roles in the 
expression of ITGA6. Both Oct4 and Sox2 bind to the 
promoter region of the ITGA6 gene [62, 64]. On the 
other hand, the silencing of Oct4 and Sox2 leads to the 
downregulation of ITGA6 activity [64]. It is speculated 
that ITGA6 sustains the stemness of human MSCs by the 
activation of the PI3K/AKT pathway and downregulation 
of p53, a cell cycle regulator protein [64]. In pluripotent 
stem cells, ITGA6 levels diminish during differentiation, 
and integrin β1 is activated, leading to phosphorylation 
and activation of Focal adhesion kinase (FAK), which 
induces the cell differentiation and reduces the expres-
sion of the pluripotency factors Oct4, Sox2, and Nanog 
(Fig. 5) [65].

Therapeutic promises
Degenerative disc disease (DDD)
Medical research has been increasingly focused on apply-
ing stem cell-based therapy in degenerative disc diseases 
(DDDs). Perinatal MSCs, particularly those isolated from 
WJ in the UC, have shown considerable promise in car-
tilage regeneration and intervertebral disc (IVD) repair 
[66]. The first goal in using MSC therapy for DDD is to 
overcome the pathological catabolic microenvironment 
inside the disc by inhibiting the abnormal production of 
matrix-degrading enzymes and inflammatory cytokines, 
like interleukin-1β (IL-1β) and TNF-α, by the resident 
nucleus pulposus (NP) cells [67–69]. The second goal is 
to promote a healthy and more anabolic environment by 
promoting the implanted MSCs to produce growth fac-
tors (i.e., TGF-β, GDF5, & GDF6), anti-inflammatory 
agents (i.e., IL-1 receptor antagonist), and anti-catabolic 
factors known as tissue inhibitors of metalloproteinases 
(TIMPs) [66]. Previous studies revealed that MSCs are 
capable of improving the disc microenvironment mainly 
through paracrine activity by producing exosomes (extra-
cellular vesicles) that contain proteins, microRNAs, 
and lipids [66, 70, 71]. These exosomes can release their 
contents directly into the extracellular matrix (ECM) or 
deliver them into a nearby NP cell after being ingested by 
endocytosis [71].

The MSC-secreted exosomes can produce a more 
favorable environment inside the IVD by several mecha-
nisms. MSC-exosomes can release microRNAs (i.e., miR-
21 & miR-31-5p) that are capable of inhibiting caspase-3 
activity, thereby reducing NP cell apoptosis [71, 72]. 
Additionally, MSC-exosomes contain TIMPs natural pro-
teins that bind directly to the metalloproteinases (ECM-
degrading enzymes) and prevent their catabolic activity, 
thereby maintaining the ECM [73]. Moreover, MSC-exo-
somes comprise several anti-inflammatory proteins and 
miRNAs that suppress the inflammatory cytokines IL-1β 

Fig. 5  Illustrating diagram for the mechanism of action of Integrin Alpha 
6 (ITGA6, CD49f ) in maintaining self-renewal of MSCs
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and TNF-α, thereby reducing the inflammatory response 
within the IVD [66, 71]. For example, MSC-exosomes 
containing miR-532-5p were found to suppress TNF-α 
by silencing the pro-apoptotic gene RASSF5 [74]. Also, 
MSC-exosomes contain factors that enhance the expres-
sion of cartilage-specific genes aggrecan, collagen II, and 
SOX9, thereby improving cartilage regeneration [75]. 
Finally, MSC-exosomes contain several anabolic growth 
factors like TGF-β1, HGF, BMP2, and GDF5 that contrib-
ute to the regeneration of the IVD [66, 70, 76].

Nevertheless, several challenges still hinder the clinical 
application of MSCs in DDDs. These are mainly technical 
difficulties related to pre-conditioning and preparation 
of implanted stem cells and overcoming the harsh path-
ological environment of degenerated IVD. Research has 
shown that implanted MSCs cannot survive in the acidic, 
hypoxic, and nutrient-deprived avascular environment 
inside the IVD [77].

In 2018, Beeravolu et al. investigated the potential of 
using human umbilical cord-derived MSCs (UC-MSCs) 
in remedying IVD degeneration. They compared the ther-
apeutic outcomes between UC-MSCs and chondrogenic 
progenitor cells (ChPCs) derived from these cord cells in 
vitro. They showed a far greater capacity for the in vitro 
differentiated ChPCs to regenerate the IVD than their 
original UC-MSCs [3]. The UC-MSCs were differentiated 
into ChPCs by culturing them in a chondrogenic medium 
rich in TGF-β1, insulin, dexamethasone, and ascorbic 
acid. The ChPCs were then identified by expressing the 
chondrogenic markers Sox9, aggrecan, Collage type II, 
and the NP-specific cell marker FOXF1 [3]. Additionally, 
researchers at the Oakland University-William Beau-
mont Institute for Stem Cell and Regenerative Medicine 
(OU-WB ISCRM) were able to optimize in vitro differ-
entiation of human UC-MSCs into nucleus pulposus-like 
cells (NPCs) by culturing them in a special differentiation 
medium that contained TGF-β1, BMP7, GDF5, insulin, 

dexamethasone, and ascorbic acid [78]. The NPCs were 
identified by their expression for the chondrogenic 
markers Sox9, Aggrecan, and Collagen type II. More 
importantly, the differentiated cells were able to express 
NP-specific markers, including FOXF1, PAX6, CA12, and 
KRT19. When these NPCs were injected into degener-
ated rabbit IVDs, they provided much better regenerative 
capacity than their original UC-MSCs [78].

However, many studies revealed that MSC therapy 
alone in DDD is not enough. They emphasized the 
imperative need to use biocompatible materials with 
mechanical strength as scaffolds to restore mechanical 
stability and support spine loading [79–83]. Additionally, 
these scaffolds can prevent cell leakage from the injection 
site, therefore improving cell growth and differentiation. 
Most of the scaffolds investigated were injectable hydro-
gels to avoid invasive surgical interventions. Investiga-
tors at OU-WB ISCRM used self-assembling hydrogel 
scaffolds composed of polyethylene glycol biocompat-
ible materials to examine the efficacy of combined MSC 
therapy and tissue engineering in managing DDD. They 
discovered that using self-assembling scaffolds can pro-
mote retention of the implanted cells within the IVD, 
which improves cellularity and ECM accumulation of the 
regenerated tissue [83].

Nevertheless, the hydrogel scaffolds do not provide 
sufficient mechanical support to completely restore the 
degenerated disc height. Therefore, the researchers at 
OU-WB ISCRM suggested a novel multi-pronged thera-
peutic approach for treating DDD [84]. This approach 
can be summarized in three main ideas: (1) Using a spe-
cial distractive medical device to gradually restore the 
disc space to its natural height (Fig.  6). (2) Injection of 
self-assembling hydrogel scaffolds into the NP of the disc 
to prevent cell leakage. (3) The use of more chondrogenic 
lineage descendant progenitor cells like NPCs, which 
proved to be more effective in the regeneration process 
than the primitive UC-MSCs.

Retinal degenerative diseases (RDDs)
Retinal degenerative diseases (RDDs) refer to a group of 
pathologies that involve progressive degeneration of the 
cells in the retina, leading to low vision that subsequently 
worsens to induce loss of visual fields (partial blindness) 
and eventually end up in complete blindness [85–87]. 
These pathologies include (1) age-related macular degen-
eration, (2) retinitis pigmentosa, (3) pediatric Stargardt 
macular dystrophy (Stargardt disease), (4) diabetic reti-
nopathy, and (5) glaucoma [86, 88]. The visual damage 
induced by RDDs is irreversible since the lost retinal cells 
are not replaced [86]. Hence, using MSC-based therapy 
provides a therapeutic promise to replace degenerated 
cells.

Fig. 6  Distractive medical device to restore intervertebral disc space
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Several studies investigated the role of perinatal MSCs 
in managing RDDs [85, 89–91]. It is anticipated that 
MSCs can act through two main mechanisms to halt 
and overcome the damage induced by RDDs. The first 
mechanism is to support and protect the existing reti-
nal cells by producing growth and anti-apoptotic factors. 
This mechanism is achieved in two ways: (i) secretion of 
several growth and neurotrophic factors that improve 
the persistence and growth of retinal cells, such as hepa-
tocyte growth factor (HGF), nerve growth factor (NGF), 
pigment epithelium growth factor (PEGF), epidermal 
growth factor (EGF), Brain-derived neurotrophic fac-
tor (BDNF), and ciliary neurotrophic factor (CNTF). 
(ii) secretion of anti-inflammatory and anti-apoptotic 
agents that protect and support the survival of the retinal 
cells, such as TGF-β, interleukin-6 (IL-6), indoleamine 
2,3-deoxygenase (IDO), TNF-α stimulated gene 6 protein 
(TSG-6), and programmed death-ligand 1 (PDL-1). The 
second mechanism is to rejuvenate the pool of degener-
ated cells. This mechanism is achieved by direct differen-
tiation into new retinal cells that replace the degenerated 
ones. It is suggested that signals from the damaged retina 
stimulate this differentiation [88, 92]. Additional mecha-
nisms are also speculated to contribute to the treatment 
of RDDs by MSCs, such as the ability of MSCs to release 
extracellular vesicles that comprise functional molecules 
like anti-inflammatory proteins, growth factors, and 
microRNAs [93–95]. These vesicles were found to be 
endocytosed by the existing retinal cells in a receptor-
mediated, dose-dependent, and saturable manner [96]. 
Other mechanisms may include mitochondrial transfer 
and/or fusion with pre-existing retinal cells [88].

Similar to the previous principle in DDD, it is antici-
pated that using more specialized derivative progenitor 
cells would be more effective for retinal regeneration than 
using the original primitive MSCs. Brown et al. (2022) 
differentiated perinatal MSCs obtained from the human 
UC into retinal progenitor cells (RPCs) in vitro by cultur-
ing them for two weeks in a special neurobasal medium 
that contains EGF, retinoic acid, taurine, glutamine, and 
B27 neuronal supplement [85]. Then, they compared the 
therapeutic effects between the original primitive MSCs 
and their differentiated RPCs by intravitreally injecting 
these cells into a retinitis pigmentosa mouse model. They 
found that the primitive MSCs were restricted to the 
epithelial layer of the retina. In contrast, the RPCs could 
migrate and integrate into different neuronal layers of the 
retina. The RPCs significantly increased the retinal thick-
ness and improved the visual function in the retinitis pig-
mentosa mouse model compared to the primitive MSCs. 
Additionally, it has been indicated that RPCs are the best 
candidate for stem cell-based therapy of RDDs [97].

In summary, RDDs are the primary sources of visual 
impairment and blindness worldwide. A promising 

therapeutic approach is available by using MSC-based 
therapy. The experimental findings on animal models are 
promising; however, these findings still need to be vali-
dated by clinical trials. Many phase I and II trials were 
performed and reviewed in the literature [86, 87, 97–99]. 
Most of these trials focused mainly on the safety and effi-
cacy of the application of MSCs in RDDs. However, sev-
eral questions still need to be investigated and verified in 
future clinical trials. These include questions about the 
best source of MSCs to be used (embryonic vs. perina-
tal vs. adult), the in vitro differentiation state of the cells 
(primitive vs. RPCs), the route of administration (intra-
venous vs. intravitreal), and the optimized dose required 
without inducing potential hazards.

Ischemic heart disease (IHD)
Ischemic heart disease, also known as coronary artery 
disease, is the leading cause of death worldwide [100–
102]. It involves a reduction of blood supply to the car-
diac muscle due to a narrowing in a coronary artery [102, 
103]. The reduced blood supply can lead to damage of 
part of the cardiac muscle and death of cardiomyocytes, 
known as myocardial infarction (MI). The MI will even-
tually result in heart failure [102].

It has been demonstrated that intravenous infusion of 
perinatal MSCs can enhance heart function and improve 
quality of life in patients with stable heart failure [104]. 
The perinatal MSCs can be induced to differentiate into 
cardiomyocytes in vitro by either treating them with spe-
cial chemical agents and supplements [105] or by cocul-
turing them with pre-existing cardiomyocytes [106–108]. 
The most common and widely used chemical to induce 
differentiation of MSCs into cardiomyocytes is 5-aza-
cytidine (5-AZA). This chemical agent is an analog of the 
pyrimidine nucleoside cytidine [109]. It can disrupt RNA 
metabolism and inhibit DNA methylation; therefore, it is 
used as an anticancer drug for treating different kinds of 
leukemia [109–111]. It has been anticipated that 5-AZA 
induces cardiomyogenic differentiation of MSCs by acti-
vating the MEK-ERK and Notch signaling pathways [105, 
112]. The suggested mechanism of action of 5-AZA to 
induce differentiation of MSCs into cardiomyocytes is 
illustrated in Fig. 7.

Previous studies recommended adding culture supple-
ments, such as fetal bovine serum and platelet lysate, to 
support MSC growth, expansion, and differentiation 
[113–116]. Platelet lysate (PL) is a media supplement 
that is rich in several growth and differentiation factors; 
therefore, it can be used as a differentiation inducer in 
vitro [117]. Among these factors are the platelet-derived 
growth factor (PDGF), vascular endothelial growth fac-
tor (VEGF), insulin-like growth factor 1 (IGF-1), TGF-β, 
and EGF [115, 117, 118]. It has been revealed that human 
PL (hPL) is an effective cardiomyogenic supplement. The 
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combined treatment of perinatal MSCs with hPL and 
5-AZA resulted in greater cell viability and significantly 
higher expression of cardiomyogenic markers than treat-
ment with 5-AZA alone [117]. The PL is prepared by sev-
eral freezing and thawing cycles of platelet concentrate 
or platelet-rich plasma samples, resulting in mechanical 
disruption and lysis of the platelets [115, 117]. To induce 
cardiomyogenic differentiation, the MSCs are incubated 
in a cardiomyogenic-induced medium containing 10 µM 
5-AZA for 24 h only. After that, the cells are incubated 
in a basal growth medium containing 20% hPL for three 
weeks. The hPL medium is changed every three days 
[105, 117, 119].

The cardiomyogenic markers that indicate the differ-
entiation of MSCs into cardiomyocytes are divided into 
two categories based on the differentiation stage [100]. 
Markers of early differentiation, which indicate the ini-
tiation of transformation of MSCs into cardiomyocytes, 
and markers of late differentiation, which indicate the 
maturation of cardiomyocytes. The essential markers of 
cardiomyogenic initiation are the GATA-binding protein 
4 (GATA4) and the homeobox protein Nkx2.5 [100, 119, 
120]. GATA4 belongs to the zinc finger family of tran-
scription factors that bind to the specific DNA sequence 
“GATA” [121, 122]. It is well established that GATA4 is an 
essential factor in inducing differentiation of functionally 
beating cardiomyocytes in both Xenopus and mamma-
lian systems [123]. Nkx2.5 is a homeodomain transcrip-
tion factor essential in cardiomyogenesis and cardiac 

specification [120, 124, 125]. Moreover, mutations in 
Nkx2.5 are a common cause of congenital heart disease 
[120].

The main markers of late differentiation or cardio-
myocyte maturation are cardiac troponin T (cTnT) and 
connexin-43 (Cx43) [100, 117]. The cTnT is one of three 
troponin subunits (C, I, and T) that form the troponin 
protein complex. This complex is a component of the car-
diac thin myofilaments and plays a crucial role in cardiac 
muscle contraction [126]. Mutations in the cTnT gene 
can lead to hypertrophic cardiomyopathy [127]. Cx43 is 
a prominent transmembrane protein in cardiomyocytes 
that is also known as gap junction alpha-1 (GJA1) pro-
tein because it is encoded by the GJA1 gene [128, 129]. 
It forms conductive channels between cardiomyocytes 
that allow the intercellular exchange of ions and metabo-
lites [130, 131]. The cTnT is found in the cytoplasm, while 
Cx43 is localized to the surface membrane of cardiomyo-
cytes [117]. Additional cardiac markers include desmin 
and A-type natriuretic peptide (Fig. 7).

The identification of a resident population of cardiac 
multipotent stem cells that are pre-committed to the 
cardiac lineage has reformed the stem cell-based thera-
peutic approaches in IHD [132, 133]. These are known 
as cardiac progenitor cells (CPCs), and they can differ-
entiate into all types of cardiac cells, including cardio-
myocytes, endothelial cells, and vascular smooth muscle 
cells [134]. Under normal conditions, CPCs are quiescent 
in their cardiac niche. Upon cardiac damage or stimula-
tion, they become active, proliferate, and differentiate 
to repair the damaged tissue [133, 135]. They are char-
acterized and subclassified by their expression of dif-
ferent surface markers. The most common markers are 
the tyrosine kinase receptor c-kit (CD117), the stem cell 
antigen 1 (Sca-1), and the insulin gene enhancer protein 
ISL-1 [132, 133, 135]. It is anticipated that CPCs have a 
higher cardiac regenerative potential than MSCs. Experi-
mental research showed that CPCs can reduce infarct 
size, improve cardiac function, and promote the release 
of growth and angiogenic factors in the hearts of differ-
ent animal models [136–138]. However, the extent of car-
diac damage usually exceeds the capacity of endogenous 
CPCs to repair due to their very limited numbers [135]. 
Therefore, several studies have investigated the ex-vivo 
production of CPCs from different cell sources [132]. 
Currently, we are focusing on the in vitro differentiation 
of perinatal MSCs into CPCs and the therapeutic poten-
tial of these descendant cardiac lineage cells in IHD.

Neurodegenerative diseases (NDDs)
Neurodegenerative diseases (NDDs) are a group of 
debilitating disorders characterized by the progressive 
loss of structure and function in the nervous system. 
While these conditions are commonly associated with 

Fig. 7  The suggested mechanism of action of 5-azacytidine (5-AZA) in 
inducing MSC differentiation into Cardiomyocytes. 5-AZA inhibits MSC 
proliferation by suppressing the expression of Nanog and Sox2. It is an-
ticipated that 5-AZA is acting through Notch and MAPK pathways to 
stimulate the expression of cardiac-specific genes and eventually induce 
differentiation into cardiomyocytes. Abbreviations: DLL4, delta-like 4 li-
gand; GATA4, GATA-binding protein 4; Nkx2.5, NK-2 homeobox 5 protein; 
cTnT, cardiac troponin T; ANP, A-type natriuretic peptide
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aging, they can occur at any stage of life due to genetic, 
environmental, or idiopathic factors. Some of the most 
well-known NDDs include Parkinson’s disease, Multiple 
Sclerosis, Alzheimer’s disease, Huntington’s disease, and 
amyotrophic lateral sclerosis. There is increasing interest 
in MSCs due to their regenerative, immunomodulatory, 
and neuroprotective properties, especially since curative 
options are limited.

Parkinson’s disease (PD) is a progressive neurodegen-
erative disorder characterized by a loss of motor function 
and the presence of tremors. The pathology of the dis-
ease involves the accumulation of misfolded α-synuclein 
aggregates within dopaminergic (DA) neurons, which 
form Lewy bodies. This buildup disrupts synaptic trans-
mission and affects dopamine regulation [139], eventu-
ally resulting in damage and death of DA neurons in the 
substantia nigra pars compacta and noradrenergic neu-
rons in the locus coeruleus of the brain [140]. The DA 
neurons produce and release dopamine, a neurotransmit-
ter that relays signals controlling motor functions. Addi-
tionally, noradrenergic neurons are part of the autonomic 
nervous system, which, when activated by noradrenaline, 
is responsible for alertness [141, 142]. Since these brain 
areas control motor function, patients with later-stage PD 
exhibit symptoms such as muscle tremors, rigidity, slow 
movements, bradykinesia, and other motor dysfunctions 
[140]. PD is the second most common neurodegenerative 
disease and is projected to affect nearly 1.2 million people 
in the next 20 years; it significantly impacts the quality of 
life of individuals affected and causes a socioeconomic 
burden that accounts for almost 14.4 billion dollars annu-
ally in the United States [143]. The onset of PD symptoms 
commonly occurs after the age of 60 and affects about 1% 
of that age group (> 60 years) [144]. Although there are 
treatments for this disease, they are not very effective and 
cannot reverse or stop the progression of the disease.

Currently, there is no cure for PD. However, treatment 
options, such as pharmaceuticals and surgical interven-
tion, are available to help PD patients manage their symp-
toms. These treatments include medications that either 
increase the dopamine levels in the brain or mimic dopa-
mine’s effects on the brain, such as dopamine precursors 
or dopamine agonists, in addition to surgical interven-
tions such as deep brain stimulation [145]. Although 
these therapies can relieve some of the symptoms of PD, 
they cannot reverse or stop the damaging effects of the 
disease. The limited effectiveness of these drugs in halting 
disease progression and the anticipated increase in dis-
ease prevalence in future generations exhibit an immense 
need to develop a more effective treatment to stop and 
reverse the pathology of PD. We hypothesize that MSCs 
and DA neuron progenitors (DAPs) can halt neurodegen-
eration and provide neuro-regenerative effects.

We examined the effect of cell therapy on the 6-OHDA 
toxin-induced PD rat model. The toxin induces neural 
cell death via oxidative stress. Latchoumycandane et al. 
found that some of these pathways are via free radical 
generation, mitochondrial dysfunction, cytochrome c 
release, activation of caspase-9 and caspase-3, proteolytic 
activation PKCδ, and DNA fragmentation [146]. In ear-
lier studies, perinatal MSCs have been shown to decrease 
oxidative stress by reducing levels of malondialdehyde 
and enhancing superoxide dismutase, glutathione, and 
the antioxidant enzyme glutathione peroxidase [147]. 
This may be why the MSC-treated animals displayed 
decreased necrosing DA neurons and increased tyrosine 
hydroxylase-positive (TH+) cells. Tyrosine hydroxylase 
(TH) is an important enzyme needed to produce dopa-
mine. It acts by converting the amino acid tyrosine into 
L-DOPA, a precursor of dopamine. Our studies showed 
that DAPs are more effective than MSCs in mitigating 
disease symptoms in PD rats (unpublished results). This 
might be attributed to the high levels of neurotrophic 
factors GDNF and BDNF expressed by DAPs, which 
are known to promote neuroprotection in DA neurons. 
Additionally, the ability of DAPs to integrate into the 
damaged substantia nigra pars compacta and differenti-
ate into DA neurons may contribute to their more prom-
ising results compared to MSCs.

On the other hand, multiple sclerosis (MS) is a chronic 
autoimmune disorder that affects the central nervous 
system (CNS) and results in demyelination, neuroinflam-
mation, and axonal degeneration. MS presents a unique 
challenge due to its inflammatory and demyelinating 
characteristics, especially in young adults [148, 149]. The 
illness features either relapsing-remitting phases or pro-
gressive forms, significantly affecting motor, sensory, and 
cognitive functions [150, 151]. It is believed to be caused 
by immune-mediated attacks on myelin, the protective 
covering of nerve fibers. This condition arises from an 
unusual interaction between genetic factors and environ-
mental triggers. Clinically, MS is characterized by symp-
toms such as fatigue, muscle weakness, spasticity, visual 
disturbances, and cognitive impairments, which can lead 
to varying levels of disability [152–155]. Although there 
have been advancements in disease-modifying thera-
pies aimed at reducing inflammation and slowing dis-
ease progression, these treatments primarily focus on 
the immune response. They do not address the underly-
ing neurodegeneration or promote repair mechanisms 
[156, 157]. This has generated interest in stem cell-based 
therapies, particularly MSCs because they can modulate 
the immune response, promote remyelination, and repair 
neuronal damage [158–160].

The MSCs derived from perinatal sources have sig-
nificant potential for treating MS, due to their unique 
biological properties, as previously mentioned. One of 
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the primary mechanisms MSCs exert their therapeutic 
effects on MS is through immunomodulation [161, 162]. 
MS is driven by autoreactive T cells, particularly Th1 
and Th17 subtypes, which attack the myelin sheath sur-
rounding neurons. MSCs can suppress these pathogenic 
cells by secreting anti-inflammatory cytokines, includ-
ing interleukin-10 (IL-10), TGF-β, and prostaglandin 
E2 (PGE2) [161–164]. Additionally, MSCs enhance the 
differentiation of regulatory T cells and reduce the acti-
vation of dendritic cells and macrophages, effectively 
shifting the immune response towards a more tolero-
genic state [163–165].

In addition to immunomodulation, MSCs also con-
tribute significantly to the remyelination process in MS. 
These cells can differentiate into oligodendrocyte pro-
genitor-like cells, which further mature into oligoden-
drocytes, the myelin-producing cells in the CNS [166]. 
Furthermore, MSCs secrete a range of growth factors, 
such as BDNF, NGF, and GDNF [167, 168]. These factors 
enhance the survival and functionality of existing oligo-
dendrocytes and support neuronal health by contributing 
to the repair of damaged neural tissue [169].

MSCs play a crucial role in remyelination and in offer-
ing neuroprotective benefits. They achieve this by secret-
ing anti-apoptotic factors and releasing exosomes that 
contain microRNAs, proteins, and lipids, all supporting 
neuronal survival and aiding in axonal repair. By reduc-
ing oxidative stress and inflammation in the CNS, MSCs 
help create an environment favorable for effective tissue 
repair [170–177]. Additionally, the components of the 
extracellular matrix derived from MSCs, including lam-
inin and fibronectin, support the structural integrity of 
neural networks and enhance their neuroprotective role 
[178].

Another critical mechanism MSCs aid in MS treat-
ment is angiogenesis and restoring the blood-brain bar-
rier (BBB). MSCs secrete VEGF and HGF, which enhance 
vascular repair and reduce BBB permeability [179–181]. 
This is especially crucial in multiple sclerosis, where BBB 
dysfunction permits immune cells to enter the central 
nervous system, worsening the disease [161]. Several 
preclinical studies provide substantial evidence support-
ing the efficacy of primitive MSCs in animal models of 
MS, such as experimental autoimmune encephalomyeli-
tis [182–185]. These studies have demonstrated reduc-
tions in clinical scores, improved motor function, and 
enhanced remyelination. Similarly, clinical trials in MS 
patients have reported promising outcomes, including 
significant improvements in disability scores and reduc-
tions in relapse rates. However, the heterogeneity in trial 
designs, cell sources, doses, and administration routes 
present challenges in drawing definitive conclusions 
about MSC therapy’s overall effectiveness [186–188].

Intravenous (IV) delivery is the most commonly used 
method for MSC transplantation in MS due to its safety 
and practicality. However, intrathecal (IT) administra-
tion, which involves directly injecting the cells into the 
cerebrospinal fluid, may offer enhanced therapeutic 
effects by improving MSC availability within the CNS 
[187]. Optimal dosing regimens are still actively being 
investigated, with new evidence suggesting that repeated 
administrations may be needed to maintain therapeutic 
benefits over time [189–191].

While there is significant potential for MSCs in treat-
ing MS, several challenges persist. The long-term safety 
and effectiveness of MSC therapies, especially for chronic 
neurodegenerative diseases, are still not completely 
understood [186, 192]. Additionally, variability in MSC 
isolation, expansion, and delivery protocols hinders the 
standardization required for broad clinical adoption [161, 
193]. We believe more research is needed to elucidate the 
precise mechanisms underlying MSC-mediated neurore-
generation and immunomodulation. Additionally, novel 
strategies to enhance MSC functionality, such as precon-
ditioning with hypoxia or bioactive molecules, could fur-
ther improve their efficacy [162, 186].

Conclusion
This review provides the fundamental understanding of 
perinatal MSCs that is essential for future experimental 
research and therapeutic applications of these cells. It 
revises the main biological characteristics that make peri-
natal MSCs superior to stem cells from other sources. 
The main advantages of perinatal MSCs over MSCs from 
other sources can be summarized by their high prolif-
erative capability, low immunogenicity and tumorigen-
esis, large-scale availability, and easy accessibility without 
major ethical concerns. These advantages render the 
perinatal MSCs a more favorable position, making them 
the center of attention for both medical researchers and 
clinicians. However, no single molecular marker can defi-
nitely identify MSCs, and a combination of several bio-
logical markers is a must. We recommend using at least 
two positive markers of stemness (CD29, CD73, CD90, 
and/or CD105) and two negative markers to exclude the 
hematopoietic origin of the cells (specifically CD34 and 
CD45).

In the realm of therapeutic applications, perina-
tal MSCs could be a promising solution for degenera-
tive disorders such as degenerative disc disease, retinal 
degenerative diseases, ischemic heart disease, and neu-
rodegenerative diseases. Scientific research indicates that 
more specialized progenitor cells derived from perinatal 
MSCs in vitro can provide a more potent regenerative 
response than the original undifferentiated MSCs. As we 
advance, it is crucial to continue this research trajectory, 
progressing from laboratory experiments to practical 



Page 13 of 17Allouh et al. Stem Cell Research & Therapy          (2025) 16:127 

applications, in order to fully exploit the regenerative 
abilities of perinatal MSCs. This can revolutionize the 
field of regenerative medicine.
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