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Abstract 

Cardiovascular diseases are the main cause of death and disability in the clinical setting. Among several pathological 
conditions, myocardial infarction (MI) is a common clinical finding and happens due to the reduction or complete 
interruption of blood support. Stem cells and progenitors are valid cell sources with significant potential to allevi‑
ate several tissue injuries. Differentiation to mature and functional cells and the release of various growth factors, 
and cytokines are the main reparative mechanisms by which stem cells mediate their reparative tasks. Exosomes 
(Exos), a subset of extracellular vesicles (EVs), exhibit great theranostic potential in biomedicine. Along with whole‑
cell‑based therapies, the pre‑clinical and clinical application of Exos has been extended in animals and humans 
with ischemic heart diseases (IHD). Here, in this review article, we aimed to highlight the importance of Exos in IHD 
and address the mechanism of action by focusing on their regenerative potential.
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Introduction
According to a comprehensive population‐wide analysis, 
IHD is the main cause of human death in the twenty-
first century [1, 2]. Due to the loss of cardiomyocyte 
membrane integrity, multiple diagnostic biomarkers 

such as creatine kinase-MB (CK-MB), cardiac troponin 
T (cTnT), and cTnI are released into the circulation [3, 
4]. Inadequate oxygen levels and nutrient delivery into 
the myocardium can contribute to an irreversible loss of 
functional cardiomyocytes and weakening of ventricular 
contractility, resulting in heart failure [5–7]. Although 
reperfusion approaches and fibrinolytic therapies are 
helpful in the restoration of cardiac tissue output, the 
possibility of bleeding, blood clot formation, wound 
infection, thromboembolism, pericardial effusion, etc. 
are life-treating factors in MI patients [8, 9]. Thus, it is 
mandatory to develop new modalities with more thera-
peutic outcomes and fewer post-complications in MI 
patients. While timely diagnosis in the initial stages, 
long-term follow-up, and prognosis of ischemic changes 
are mandatory in clinical settings and are beneficial to 
increase the efficiency of therapeutic protocols [10–13].

Like several tissue types, cardiac homeostasis and the 
healing process are well-organized intercellular commu-
nications and are in part controlled by EVs [14]. EVs are 
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heterogeneous and nano-sized vesicles and are involved 
in the transfer of growth factors, lipids, DNAs, mRNAs, 
and long non-coding RNAs (lncRNAs) [15–17]. In gen-
eral, EVs include Exos, microvesicles (MVs or ectosomes), 
and apoptotic bodies with different sizes, biogenesis sys-
tems, cargoes, and functions [18–21]. Among EV types, 
Exos are produced by the endosomal system and actively 
participate in intercellular crosstalk [22]. In the acceptor 
cells, the internalized Exos are guided to the lumen of 
early endosomes (Fig. 1) [20, 23]. Inside the cells, endog-
enous Exos are also generated by endosomes and mul-
tivesicular bodies (MVBs), leading to the production of 
numerous intraluminal vesicles (ILVs) [24]. Using multi-
ple effectors such as ESCRTs, SNAREs, RABs, etc. ILVs 
are released into the extracellular matrix (ECM), hereaf-
ter known as Exos (Fig. 2) [25–35].

Recent research has pointed to the valuable role 
of EVs mainly Exos in the detection and monitor-
ing of IHD (Table  1). Exos can easily reach biofluids, 
thus making them invaluable diagnostic tools in IHD 
patients [36]. Exo cargo is a real-time reflection of the 
metabolic status of original cardiomyocytes. Thus, 
these nanoparticles (NPs) can be used as valid thera-
nostics after MI occurrence [37, 38]. Cardiomyocyte 
Exos harbor diverse biomolecules like proteins, lipids, 
and RNAs [messenger RNAs (mRNAs), microRNAs 
(miRNAs), circular RNAs (circRNAs), non-coding 
RNAs (ncRNAs)], and other compounds. The content 

and cargo types can be varied according to the spe-
cific pathophysiological circumstances [39]. Data have 
confirmed that the release of cardiac tissue EVs is fast 
compared to free conventional biomarkers like cTnI in 
various ischemia/reperfusion (I/R) models. Therefore, 
it is possible to follow cardiac tissue-specific miRNAs 
in plasma less than 4 h, after the occurrence of MI [40, 
41]. Some miRNAs such as miRNA-133a/b, -320, -499, 
-1, and -208a have relatively diagnostic values for moni-
toring the function of cardiomyocytes [41]. Exosomal 
miRNAs and other genetic elements are resistant to 
degradation processes with key diagnostic values for 
IHD [42–44]. Most of the exosomal miRNAs are asso-
ciated with the regulation of cardiomyocyte bioactivity 
and homeostasis. Thus, elevation/reduction of specific 
miRNA types can reflect the real-time changes within 
the heart after being exposed to insulting conditions 
[39]. For example, p53 signaling cascade-responsive 
miRNAs such as miRNA-192, -194, and -34a, are abun-
dant in the serum Exos of individuals with acute MI 
[45]. Hypoxic cardiomyocytes can produce Exos with 
higher levels of miRNA-222, -143, and matrix metal-
loproteinases (MMPs) compared to normal cardiomyo-
cytes [46]. There is a close relationship between specific 
miRNA types and heart tissue function. The levels of 
exosomal miRNA-152-5p, -204, lncRNA NEAT1, and 
-3681-5p can indicate the possibility of ST-segment and 
MI occurrence [47, 48].

Fig. 1 Exo biogenesis and secretion routes inside the host cells. Internalized Exos are packed inside the intracellular vesicles named 
early endosomes. Early endosomes mature into later endosomes and MVBs. Along with these changes, several new ILVs are generated 
via the invagination of the vesicle membrane. Several biomolecules are sequestrated inside the ILVs. MVBs with numerous ILVs are guided 
toward lysosomal degradation to fuse cell membranes to release their contents (ILVs) into the extracellular matrix where they are called hereafter 
Exos
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Exosomal proteins and peptides are also valuable pre-
dictive biomarkers for MI. The existence of different pro-
teins in cardiac tissue Exos such as sarcomeric proteins, 
cardiac-type myosin-binding protein C, myomesin, tro-
pomyosin, and valosin-containing protein can help us 
to discriminate them from non-cardiac tissue sources 
[49]. In patients with elevated ST-segment, exosomal 
platelet-derived GPIIb and vascular endothelial cadherin 
(VE-cadherin) increased [50]. Other common biomark-
ers such as TNF-α and hypoxia-inducible factor 1 alpha 
(HIF-1α) are elevated in cardiomyocyte Exos [51, 52].

Some studies have revealed that the release of Exos 
from injured cardiomyocytes can promote further 
cytopathic effects. For instance, cardiomyocyte-derived 
Exos containing heat shock protein 60 (HSP60), and 
TNF-α can interact with toll-like receptors (TLR), stim-
ulating apoptotic changes [53]. While other exosomal 

HSPs like HSP70 can protect the cardiomyocytes 
against I/R injury via the activation of the TLR4 signal-
ing pathway [54]. The activation of other mechanisms 
such as autophagy [beclin-1↑, LC3-II/LC3-I ratio↑, and, 
Atg12↑] by exosomal miRNAs (miRNA-30a) is possi-
ble [55]. Local Exos (miRNA-143 and -222) can stimu-
late the angiogenesis inside the injured myocardium, 
resulting in the reduction of fibrotic changes. Cardiac 
progenitor cells can release Exos containing several 
pro-angiogenesis factors such as vascular endothe-
lial growth factor (VEGF), insulin-like growth factor-1 
(IGF-1), transforming growth factor-β, and miRNA-132 
to re-establish the blood supplementation, reduce car-
diomyocyte apoptosis (PDCD4↓ and miRNA-21↓, and 
-210), and cardiac fibrosis [miRNA-29b, -323-5p, -455, 
and -466] [46, 56–59]. These Exos can blunt the oxida-
tive damage of cardiomyocytes and deactivate Caspases 
3, and 7 [60].

Fig. 2 Different molecular pathways are involved in the generation of ILVs. MVBs with numerous intraluminal ILVs are generated using multiple 
pathways. To be specific, ESCRT‑dependent and ESCRT‑independent pathways can control the generation of de novo ILVs. In the canonical 
ESCRT‑dependent pathways, four complexes including ESCRT‑0, ‑I, ‑II, ‑III along with ATPase VPS4 regulate the dominant process of ILV formation 
(1). The complementary non‑canonical ESCRT‑dependent pathways, effectors such as HD‑PTP (2) or Alix (3) in close collaboration with ESCRT‑III 
and VPS4 sequestrate certain biosignaling molecules into the MVBs. In line with these activities, lipid rafts belonging to non‑canonical 
ESCRT‑dependent systems are also important. More interestingly, some tetraspanins such as CD63 are involved in the generation of nascent ILVs 
by both ESCRT and ceramide‑independent mechanisms. It is thought that the nSMase2‑ceramide pathway is another important molecular axis 
that regulates the formation of ILVs in MVBs in an ESCRT‑independent manner. Factors such as caveolin‑1 or flotillins proceed with the formation 
of ILVs by lipid raft‑dependent pathways with simultaneous activation of the nSMase‑ceramide pathway in some cell types. [26] Copyright 2022; 
Molecular Cancer
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Exos as drug delivery platforms 
in the cardiovascular system
In terms of cardiovascular disease, it is possible to deliver 
naïve or engineered Exos using a variety of administra-
tion methods (Fig. 3). For instance, intravenous, intracar-
dial, intradermal, epicardial, and intraperitoneal routes 
have been proposed to deliver the Exos to target sites 
[61–65]. Among different administration methods, intra-
venous injection is a non-invasive approach. However, 
off-target distribution and rapid elimination from circu-
lation are the main drawbacks. The sequestration of Exos 
by hepatic, splenic tissues, and pulmonary vascular sys-
tem after intravenous administration requires repeated 
and high doses of Exos [66–68]. Notably, data have indi-
cated that intravenously infused Exos accelerated the 
healing of ischemic myocardium in several animal mod-
els [69–71]. In contrast to intravenous infusion, the direct 
intracoronary artery and intramyocardial injection can 
circumvent several limitations such as off-target delivery 
and non-specific sequestration in the liver, spleen, and 
other tissues [8]. Based on previous data, the direct intro-
duction of Exos via myocardium and intracoronary route 
improved efficiently the healing of ischemic myocardium 
in animal models [72, 73]. For example, the intramyocar-
dial injection of cardiosphere-derived cells in pig models 
led to improved ventricular function compared to intra-
coronary infusion groups [74]. It seems that intramyo-
cardial injection is more effective in the alleviation of 

pathological conditions compared to the intracoronary 
administration method because this approach provides a 
suitable platform for the efficient delivery of higher exo-
somal cargo into the injured myocardium with enhanced 
retention time, and prominent Exo-to-cardiac cell inter-
action [75]. Besides, this approach avoids the direct 
contact of Exos with the blood components and specific 
biological barriers. However, catheter-based delivery or 
open-chest surgery is available for the intramyocardial 
injection of Exos [76, 77]. It has been indicated that the 
intramyocardial injection can increase left ventricular 
ejection fraction in both acute and chronic MI models 
via the reduction of abnormal cardiac remodeling, and 
fibrosis [72]. Despite these advantages, the invasive entity 
of intramyocardial injection makes it relatively prob-
lematic in clinical cardiology [72]. The direct injection 
of Exos into the injured myocardium can contribute to 
rapid elimination, and loss of exosomal integrity before 
obtaining regenerative benefits [75]. Due to poor nega-
tive charge, Exos form microaggregates which affect their 
distribution, and even delivery properties [78]. Of note, 
repeated high doses of Exos can provoke immune cell 
reactivity in allogeneic models, leading to the stimula-
tion of inflammation at the site of injury and a postponed 
healing process [79]. The therapeutic effects of Exos at 
the site of injury are associated with the promotion of 
phenotype acquisition in macrophages, and the reduc-
tion of inflammation and aberrant ECM remodeling [49, 

Table 1 Alteration of some genetic elements and factors in cardiac cell Exos under different conditions

Cytokines and proteins miRNAs MI or other stressful conditions 
compared to the normal status

References

Apolipoprotein D, Apolipoprotein C3, 
Complement C1q, subcomponent subunit 
A (C1Q1A), Complement C5 (C5), Glyco‑
protein Ib Platelet Subunit Alpha (GP1BA), 
Pro‑Platelet Basic Protein, HSp20, HSp60, 
HSp70, IL‑6, Glut1, Glut4, NAD(p)H oxidase, 
TNF‑a, Phosphatase and tensin homolog 
(PTEN), EGFR, Pregnancy‑associated plasma 
protein‑A, Fibronectin, Collagen, Alix, HIF‑1α, 
TGF‑β, CD63, MMP, collagen alpha‑1 (I) chain 
precursor, heat shock cognate 71 kDa protein, 
angiopoietin‑related protein 2 precursor, 
glyceraldehyde‑3‑phosphate dehydrogenase, 
serine protease HTRA1 precursor, elongation 
factor 1‑alpha 1‑like, sodium/potassium‑
transporting ATPase subunit alpha‑1 precur‑
sor, Na, K‑ATPase alpha‑1 subunit, ATPase, 
Na + /K + transporting, alpha 1 polypeptide, 
isoform CRA, apolipoprotein E precursor, 
L‑Lactate dehydrogenase A chain, L‑Lactate 
dehydrogenase B chain, polyubiquitin‑C 
precursor, clathrin heavy chain 1

miR‑133a, miR‑21, miR‑423, miR‑328, miR‑
29b, miR‑208, miR‑499, miR‑1, miR‑192, 
miR‑1956, miR‑34a, miR‑134, miR‑194, miR‑
126, miR‑486, miR‑3681, miR‑152, miR‑3681, 
lncRNA Zinc finger antisense 1 (ZFAS1), Cdr1 
antisense (CDR1AS), lncRNA HOX antisense 
intergenic RNA (HOTAIR), miR‑125a‑5p, 
miR‑100‑5p, miR‑365a‑3p, miR‑193b‑5p, 
miR‑99a‑5p, miR‑193a‑5p, miR‑361‑5p, miR‑
29a‑3p, miR‑885‑5p, miR‑345‑5p, miR‑1246, 
miR‑3692‑5p, miR‑193b‑3p, miR‑654‑3p, 
miR‑1260b, miR‑22‑3p, miR‑3168, let‑7d‑3p, 
miR‑6763‑3p, miR‑320b, miR‑155, miR‑206‑3p, 
miR‑199a‑5p, miR‑494‑3p, miR‑300c, miR‑320, 
miR‑17, miR‑19a, miR‑19b, miR‑20a, miR‑30v, 
let‑7e, miR‑10a, miR‑27b, miR‑100, miR‑
126‑3p, miR‑130a, miR‑143, miR‑503, miR‑222,

Increased [10, 46, 47, 141–176]

miR‑197, miR‑106, miR‑223, miR‑4520–2‑3p, 
miR‑5579‑5p, miR‑3681‑5p, miR‑212‑3p, let‑
7f‑1‑3p, miR‑30c‑2‑3p, miR‑126

Reduced
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80]. For instance, rat bone marrow MSC Exos can blunt 
nuclear translocation of NF-κB p65 and NLRP3 inflam-
masome with the potential to control the inflammatory 
response in oxygen/glucose-deprived H9c2 cardiomyo-
cytes [81]. Certain molecular complexes such as miR-
5p/TRAF axis can regulate inflammatory response via 
engaging the NF-κB signaling pathway [82]. Cardiac phe-
notypic plasticity after treatment with stem cell Exos is 
another mechanism by which these cells can resist harsh 
microenvironments. To be specific, cardiomyocytes can 
differentiate into the myofibroblasts to escape from the 
apoptotic changes, and inflammatory conditions [83]. 
The reduction of fibrosis is related to the reduction of 
collagen fiber deposition and conversion of dormant 
fibroblasts into reparative phenotype [84]. In  situations 
associated with an extensive myocardial infarction, or 
epicardial ischemia, Exos can be administrated from the 
epicardial surface via open heart surgery and/or video-
assisted cardiac surgery [85, 86]. It is postulated that this 
approach enables us to more focused conveyance of Exos 

into the injured sites especially in patients without the 
possibility of open-heart surgery [85, 86].

In less invasive approaches, hydrogel-bearing Exos can 
be used as cardiac patches on the pericardial surface or 
directly injected into the deep layers of the myocardium 
for sustained release of Exos into the target sites [87]. The 
porosity, swelling rate, and biodegradability of these com-
pounds make them release loaded Exos in a controllable 
manner [2]. Based on data from different studies, Exos 
can be loaded into the hydrogel using different strategies. 
In one approach, Exos, polymers, and cross-linkers are 
mixed simultaneously and injected into the site of injury. 
The gelation in in vivo conditions enables the sustained 
release of Exos [88]. To help the gelation of hydrogels, 
ion change, UV irradiation, pH, and temperature regula-
tion are also suggested based on the chemical structure 
and type of substances [89, 90]. Hydrogels acquire the 
shape and geometries of injured sites to fill and adhere 
the inured site to surrounding neighboring tissue [90]. It 
is also possible to mix polymers and cross-linkers before 

Fig. 3 Several possible Exo applications for the alleviation of ischemic myocardium. Each approach has its advantages and limitations. The systemic 
administration of Exos can yield low on‑target effects while increasing the rapid elimination of circulating Exos via the activity of immune cells. 
Local administration of free Exos (direct intracoronary artery, intramyocardial, intrapericardial, and catheter‑based intracardial injections) or injection 
via supporting substrates and hydrogels can increase the on‑target delivery efficiency into the ischemic area. Created with BioRender online 
software
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the addition of Exos. This approach promotes hydrogel 
gelation and Exos are incorporated into the hydrogels. In 
another strategy, the dehydrated hydrogels can be incu-
bated in Exo-containing solutions. The porous structure 
allows the breathing of Exos into deep layers of hydro-
gel [91]. Therefore, hydrogels should possess a pore size 
larger than Exo diameter to facilitate exosomal breathing 
while a much bigger pore size increases uncontrolled Exo 
leakage before and after transplantation [88, 92]. In the 
last protocol, Exos and polymeric solution are mixed fol-
lowed by the addition of cross-linkers to accelerate the 
gelation [93]. The cross-linked hydrogels possess suitable 
mechanical strength and degradation rates. However, the 
existence of unreacted cross-linkers can lead to cytotoxic 
effects. Even, some cross-linker types are toxic even after 
being reacted with the polymeric backbone. Thus, the 
use of nontoxic compounds for hydrogel polymerization 
should be lessened [94]. In an experiment, growth hor-
mone-releasing peptides in combination with amphiphi-
lic peptides C16-GTAGLIGQ were used to increase the 
mesenchymal stem cell (MSC) Exo retention time in a rat 
model of MI [95]. Data indicated the reduction of inflam-
mation, apoptosis, fibrosis, and stimulation of angio-
genesis [95]. In another study, tyramine-functionalized 
hyaluronic acid (6%) was blended with cardiomyocyte 
Exos (~ equals 10–100 exosomal protein) and used for the 
differentiation of human MSCs into cardiomyocytes [96]. 
This platform stimulated the viability of human MSCs 
and differentiation toward GATA4↑, Nkx2.5↑, and Tbx5↑ 
cardiomyocytes [96]. It seems that the covalent attach-
ment of Exos into the polymeric structure increases the 
retention time after transplantation into the target sites. 
In an experiment, thiolated Exos anchoring a CP05 pep-
tide was cross-linked to thiolated hyaluronic acid using 
epoxy macromere and aniline tetramer. The developed 
hydrogel can promote the migration of human endothe-
lial cells (ECs) and MSCs. The injection of Exo-bearing 
hydrogel was shown to accelerate angiogenesis potential 
[PECAM↑, VEGF↑ (isoforms A and B), α-SMA↑, vWF↑) 
and cardiogenesis (Cx43↑, SERCA2a↑, Ki-67↑) [97].

It seems that pre-treated cell sources can produce spe-
cific Exo types with improved regenerative outcomes. 
The incorporation of HIF-1α-expressing MSC Exos into 
RGD hydrogels efficiently reduced the fibrosis rate and 
promoted the function of the injured myocardium with a 
reduction of apoptotic cardiomyocytes (Caspases 3↓, and 
7↓) [98].

Engineered exos in cardiovascular disease
It is mandatory to use sophisticated strategies to maxi-
mize Exo distribution into the myocardium via direct 
interaction with cardiomyocytes or cardiac tissue vas-
cular system [6, 7]. To date, two main modification 

strategies have been used for exosomal surface and inter-
nal engineering (Fig.  4). For this purpose, Exos can be 
modified before isolation (indirect method) by manipula-
tion of host cells or Exos are directly subjected to engi-
neering protocols after enrichment (direct method) 
(Table  2) [1]. These approaches have led to enhanced 
healing capacity and targeting efficiency (Table  3). In 
recent years, the application of gene editing tools such 
as CRISPR-Cas9 systems has been extended to biologi-
cal systems. EVs are valid bioshuttles for transferring the 
CRISPR-Cas9 products into the recipient cells [99]. This 
system is eligible to efficiently modify the surface of EVs 
for various therapeutic purposes (Fig. 5) [100]. In a recent 
work conducted by Mun et  al., they used CRISPR-Cas9 
ribonucleoprotein (RNP)-loaded EVs decorated with car-
diac-targeting peptide (T) for the edition of ischemic car-
diomyocyte miR-34a [101]. Data revealed the successful 
delivery (~ twofold) of EVs into cardiac tissue, regulation 
of target miR-34a, and reduction of apoptotic changes 
(Cleaved caspase 3↓, and Bax↓) in infarcted mice. Schary 
and co-workers found that the disruption of the TLR4 
gene using CRISPR-Cas9 in MSCs led to an increase in 
viability, suitable cardiac tissue remodeling, and function 
in infarcted mice [102]. Data indicated that the parent 
cell manipulation via CRISPR-Cas9 can affect the levels 
of inflammatory factors inside released MSC EVs [102]. 
Despite these adamantanes, genetic materials have rela-
tively short lives inside EVs which can lead to a lack of 
appropriate gene editing therapy, and regenerative ben-
efits [99]. Besides, its immunogenicity, and non-desired 
immune responses should be precisely monitored [103].

To the best of our knowledge, there are few reports 
related to the application of engineered Exos in the car-
diovascular system [8]. In this scenario, Exo modifica-
tion has been done for different purposes as follows; a) 
to track fluorophore-, luminescence reporter-, and radi-
otracer-labelled Exos after being injected into in  vivo 
systems. Both Exo surface and lumen can be modified 
with these tracers, b) to increase Exo bioactivity and 
therapeutic benefit, c) to improve on-target delivery 
efficiency by using various peptides, proteins, and lipids 
on the exosomal surface, and d) to stimulate internali-
zation rate and endo-lysosomal escape using certain 
cell-penetrating and pH-sensitive peptides, and cationic 
lipids [104]. The indirect Exo modification can provide a 
continuous source for biomedical purposes [20, 105]. To 
modify the parent cells to produce certain Exos, direct 
genetic manipulations, incubation with certain com-
pounds, and changes in culture conditions are applicable 
options [104, 106–111]. Tetraspanins, Lamp-2b, lactad-
herin, glycosyl-phosphatidyl-inositol (GPI), and PDGFR 
are target proteins for the production of engineered 
Exos [112, 113]. The treatment of Lamp2b expressing 
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cardiosphere derived cell Exos with cardiac-specific pep-
tide, WLSEAGPVVTVRALRGTGSW, produced engi-
neered Exos with enhanced internalization capacity into 
the cardiomyocytes and higher retention time compared 
to non-engineered Exos (Fig. 6) [114]. In a similar study, 
transfection of HEK293 cells with cardiac-targeting pep-
tide-Lamp2b expressing vector generated engineered 
Exos with higher delivery efficiency in in vitro and in vivo 
conditions [115]. Other researchers produced engineered 
Exos with recombinant Lamp2b-ischemic myocardial 
targeting peptide [CSTSMLKAC] or Lamp2b-heart hom-
ing peptide with a higher internalization rate in hypoxic 
cardiomyocytes [116, 117]. In addition to the target-
ing approach, some authorities used modified Exos for 
the alteration of metabolic profile. For instance, βARKct 
expressing cardiosphere cell Exos was used in a mouse 
model of catecholamine toxicity. Data indicated that 

βARKct-bearing Exos efficiently inhibits GRK2, resulting 
in the reduction of heart failure [118]. Despite the advan-
tages related to indirect Exo modification, genetic manip-
ulation of host cells may alter the biogenesis of Exos and 
the levels of target molecules can be less in the released 
Exos [104]. Therefore, direct modification approaches 
can be used for improving loading and targeting efficien-
cies irrespective of host cell origin [25].

To encapsulate exogenous compounds into the Exo 
lumen, various techniques including cycle freeze–thaw, 
electroporation, sonication, incubation, extrusion, agi-
tation, and treatment with detergents have been used 
in different studies [20]. Among these approaches, 
freeze–thaw and incubation are inactive encapsula-
tion methods. Using freeze–thaw methods, hydropho-
bic curcumin was loaded in Exos for the alleviation of 
MI [119]. Bheri and colleagues used electroporated 

Fig. 4 Different strategies are used for cargo loading and increase of on‑target delivery of Exos into the ischemic myocardium. The sophisticated 
manipulations can be done on the parent cells or directly on the purified Exos before injection into the target sites. These approaches increase 
the delivery efficiency and therapeutic outcomes of administrated Exos in the ischemic myocardium. Created with BioRender online software
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EC-specific miRNA-126-loaded CPC EVs for the reduc-
tion of fibrosis and promotion of cardiac repair in a 
rat model of I/R injury [120]. Data exhibited reduced 
fibrotic region and cardiomyocyte diameter in the 
infarct zone after 28 days. Along with these changes, the 
number of Isolectin-B4+ capillaries and α-SMA+ arteri-
oles was increased compared to the sham groups and 
rats that received naïve EVs (Fig.  7) [120]. Sonication 
or ultrasound waves can produce several microspores 
in the lipid membrane and help the internalization of 
compounds into the Exo lumen [121]. Lamichhane and 
co-workers loaded HER2 siRNA into EVs for target-
ing human breast cancer cells MCF-7 [122]. In another 
experiment, melatonin was loaded into adipose tis-
sue stem cell EVs via sonication and administrated in 
a mouse model of MI. Data confirmed improved myo-
cardial regeneration via angiogenesis  (CD31+ vessels), 
and reduction of oxidative stress (dihydroethidium↓) 
[123]. Additionally, detergents such as Triton-X100 
(0.01%) were used for loading different compounds 

such as mycophenolic acid in immune cell Exos (i.e. 
macrophages) to reduce inflammatory response [124].

Besides the load of several therapeutics into the Exo 
lumen, modification strategies can be done on the Exo 
surface to increase the cardiomyocyte targeting prop-
erties using physical and chemical approaches. The 
chemical strategy of Exo surface includes covalent (bio-
conjugation, cloaking, and click chemistry) and non-
covalent (ligand-receptor, electrostatic, hydrophobic, 
interactions, and inorganic interaction) modifications 
[20]. In a recent study done by Shiqi et  al., they used 
platelet membranes to cloak the Exos and increase the 
internalization rate into cardiomyocytes and ECs [44]. 
Vandergriff and co-workers used the DOPE-NHS linker 
to attach cardiac homing peptide on the external surface 
of stem cell Exos. The application of these Exos reduces 
the number of apoptotic cardiomyocytes via the induc-
tion of cellular uptake. These features resulted in the 
reduction of fibrosis, infarct area, and vascularization 
[125]. In another study, NOX4 siRNA-loaded Exos were 

Fig. 5 CRISPR/Cas9‑mediated genome modification for the increase of therapeutic efficiency of Exos. Up‑regulation, down‑regulation, deletion, 
and or addition of certain factors, or improvement of delivery ligands and delivery molecules can be done in the genetic pool using CRISPR/Cas9. 
Created with BioRender online software
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chemically decorated with cardiac targeting peptide. 
Data confirmed the modified Exos are valid delivery plat-
form for the regulation of cardiac tissue fibrillation via 
the angiotensin system [126].

Some fractions of internalized Exos are directed toward 
lysosomal degradation. It is thought that the application 
of specific modification strategies can help us to produce 
Exos with the potential to promote micropinocytosis, 

cytoplasmic release, and lysosomal degradation escape 
[104, 127]. Fabrication of arginine-rich peptides-deco-
rated Exos increases the possibility of macropinocytosis 
[128]. For instance, decorating Exos with artificial leu-
cine-zipper peptide (also known as K4) and E3 ubiquitin 
ligase induces cell uptake via micropinocytosis [128]. The 
application of fluorinated peptide dendrimers in the Exo 
structure increases the lysosomal escape and simultane-
ously increases the cytosolic release [129]. Besides, cati-
onic lipids, pH-sensitive peptides can also be beneficial in 
Exo uptake and cytosolic release [130].

General limitation related to exo application 
in the clinical setting
Irrespective of the reparative properties of Exos in the 
alleviation of varied pathological conditions, several limi-
tations restrict unhindered use of them in their human 
counterparts [131]. For instance, the development of 
ready-to-use and off-the-shelf Exo sources is mandatory 
for the application in the clinical setting [131]. Recent 
data have proved that storage temperature and pH 
changes can influence the integrity of Exos and EVs [132]. 
It has been shown that multiple freeze–thaw cycles can 
distort the physiochemical properties of Exos [132]. The 
metabolic status of parent (donor) cells is a crucial factor 
in the cargo composition of isolated Exos. Even though, 
stressful conditions and pro-inflammatory status change 
the cargo sorting and density of cytokines inside the Exos 
[133]. Another issue is related to the lack of standard pro-
tocols for the expansion of parent cells and large-sized 
isolation of Exos from biofluids with minimum damages 
and higher-rate purities [134]. Besides, the sterility proto-
cols should be respected in the laboratory setting before 
the isolation of Exos. Due to the similarities in Exos and 
viral particle size, emerging data have shown that Exos 
shared common production pathways with viruses which 
per se can lead to the horizontal spreading of viral par-
ticles [25]. The possibility of unwanted side effects such 
as thrombosis with concomitant hemostatic perturba-
tions remains challenging in allograft recipients [135]. 
The activation of allo-reactive T cell responses and rapid 
elimination by reticuloendothelial system cells can be 
disadvantages of Exo application [25]. Notably, the major 
hurdles that limit and slow down Exo-based therapies 
in human medicine are mainly associated with the non-
developed GMP-grade isolation, purification, and prepa-
ration protocols for different regenerative purposes [131].

Another question is whether Exos can exhibit inde-
pendent bioactivities such as growth, and/or division 
with the right action under specific biological condi-
tions remained unanswered. Along with the generation 
of Exos via the ESCRT-related axis, the exact mecha-
nisms that orchestrated the production of Exos via 

Fig. 6 Cardiomyocyte‑specific binding peptide (CMP)‑targeted 
Exos reduced mouse cardiomyocyte programmed cell death in vitro 
after 7 days (a–e; Scale bar: 100 µm). Cardiomyocytes were incubated 
with peptide (WLSEAGPVVTVRALRGTGSW) plus vehicle (10 µM 
DMSO) (b), naïve Exos (c), CMP‑targeted Exos (d), or CMP‑targeted 
Exos + synthetic peptide (e) for 24 h for controlling the apoptosis. 
Data indicated that cells co‑treated with CMP‑targeted Exos 
or CMP‑targeted Exos plus synthetic peptide had fewer apoptotic 
changes. *p < 0.05 (compared with peptide plus vehicle control), 
and **p < 0.05 compared with Exos and CMP‑targeted Exo + peptide. 
One‑way ANOVA followed by Tukey’s Multiple Comparison post‑hoc 
test. [114].  Copyright 2019; Scientific Reports
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ESCRT-independent pathways, i.e. ceramide-mediated 
activities have not been addressed and discovered [136]. 
Thus, further studies should focus on the addressing of 
exact Exo behavior under different situations. The story 
might be hard to interpret when because each Exo har-
bors both endogenous and exogenous genetic and protein 
contents [137]. Whether the time and scale dependence 
of different exosomal cargo types differ should be also 
answered in this regard. In a common belief, Exos can 
release their contents directly into the cytosol, endo-
plasmic reticulum, and nucleus or back-fusion with the 
endosomes or other intracellular compartments in the 
recipient cells [138, 139]. The surface molecular signature 
of Exos can stimulate specific plasma membrane pro-
teins in the recipient cells which can pre-determine the 
fate and activity of Exos upon internalization [140]. Due 
to the complexity of the involved mechanisms and lack 
of enough knowledge, future studies should elucidate 
the underlying mechanisms in the direction of exosomal 

cargo into different subcellular components in the tar-
geted cells.

Conclusion
Although the number of clinical trials is low in humans 
it is thought that the application of Exos will be extended 
in the clinical setting due to several benefits compared to 
whole-cell-based therapies. By February 2025, the public 
clinical trial database https:// clini caltr ials. gov presented 
6 studies related to EVs in humans (Table  4). Based on 
several pre-clinical studies, the administration of naïve 
Exos can lead to the alleviation of pathological conditions 
after ischemic changes. The promotion of angiogenesis, 
cardiomyocyte proliferation, and the reduction of apop-
totic changes can accelerate the healing of injured myo-
cardium. Despite these advantages, off-target delivery 
is limited to the bulk application of Exos in MI patients 
especially via systemic routes. Thus, the naïve Exos can 
be engineered to increase the on-target delivery rate into 

Fig. 7 Administration of miR‑126‑loaded CPC EVs (miR‑126 + ELVs) in rats with I/R injury led to angiogenesis after 28 days (A–D). 
Immunofluorescence staining for detection of isolectin‑B4+ capillaries,  SMA+ arterioles, and  MHC+ large vessel (A). Measuring the local density 
of the isolectin‑B4+ area and vessel size (B),  SMA+ arterioles (C), and  MHC+ large vessel (D) in the myocardium. sEV‑like vehicle: ELVs; SMA = smooth 
muscle actin; Small extracellular vesicles; sEVs; SM‑MHC = smooth muscle‑myosin heavy chain. Scale bar = 100 μm; One‑way ANOVA with Tukey 
post hoc analysis. n.s. = not significant. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. [120].  Copyright 2023; ACS Nano

https://clinicaltrials.gov
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the injured myocardium. It seems that with the progress 
in engineering methods, new engineered Exo products 
can be introduced for patients with ischemic changes and 
MI. Due to the lack of enough data related to the appli-
cation of naïve and engineered Exos in clinical settings, 
any interpretation should be done with caution. Fur-
ther clinical trials associated with different parent cells, 
purification methods, doses, preparation steps, loading 
techniques, etc. are mandatory to be applied to the MI 
patients according to the standard guidelines.
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