REVIEW

Stem Cell Research & Therapy

From bone marrow mesenchymal stem cells to diseases: the crucial role of m⁶A methylation in orthopedics

Peng Li¹, Chu Zhang¹, Wen Yin¹, Mijia Tao¹, Zhipeng Niu¹, Yutao Cui^{1*}, Dankai Wu^{1*} and Feng Gao^{1*}

Abstract

Elucidating the molecular mechanisms underlying orthopedic diseases is crucial for guiding therapeutic strategies and developing innovative interventions. N6-methyladenosine (m⁶A)—an epitranscriptomic modification—has emerged as a key regulator of cellular fate and tissue homeostasis. Specifically, m⁶A plays a pivotal role in several RNA biological processes such as precursor RNA splicing, 3'-end processing, nuclear export, translation, and stability. Recent advancements indicate that m⁶A methylation regulates stem cell proliferation and osteogenic differentiation by modulating various signaling pathways. Extensive research has shown that abnormalities in m⁶A methylation contribute significantly to the onset and progression of various orthopedic diseases such as osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), and bone tumors. This review aims to summarize the key proteases involved in m⁶A methylation and their functions. The detailed mechanisms by which m⁶A methylation regulates osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) through direct and indirect ways are also discussed, with a focus on specific molecular pathways. Finally, this review analyzes the roles and mechanisms of m⁶A modification in the development and progression of multiple orthopedic diseases, offering a comprehensive understanding of the pathophysiology of these conditions and proposing new directions and molecular targets for innovative treatment strategies.

Keywords BMSCs, m⁶A methylation, Epitranscriptomic regulation, Signal transduction pathways, Orthopedic diseases, Regenerative medicine

*Correspondence: Yutao Cui cuiyt21@mails.jlu.edu.cn Dankai Wu wudk@jlu.edu.cn Feng Gao gfeng@jlu.edu.cn ¹Traumatic orthopedics, The Second Hospital of Jilin University, Changchun 130041, P. R. China

Introduction

Bone repair is a complex biological process that involves interactions among multiple cell types, signaling molecules, and matrices [1]. Central to this process are bone marrow-derived mesenchymal stem cells (BMSCs) that play a pivotal role owing to their multidirectional differentiation potential and their ease of amplification and collection, making them a focal point in orthopedic disease research [2, 3]. Enhancement of bone formation and bone mass is achieved by promoting the osteogenic and chondrogenic differentiation of BMSCs, while concurrently inhibiting their adipogenic differentiation [4–6]. Studies indicate that in typical microenvironments,

© The Author(s) 2025. **Open Access** This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article are provided in the article's Creative Commons licence, unless indicate otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, wisit http://creativecommons.org/licenses/by-nc-nd/4.0/.

BMSCs undergo osteogenic differentiation and complete the bone regeneration process, effectively repairing bone injuries. However, in abnormal bone metabolism microenvironments such as OP, bone tumors, and nonunion, the osteogenic differentiation of BMSCs may be significantly inhibited, complicating the repair of bone injuries [7, 8]. At the molecular level, multiple signaling pathways crucial to the lineage differentiation of BMSCs may be disrupted in the context of disease [9, 10]. Consequently, elucidating the critical molecular mechanisms influencing BMSCs differentiation and their function in pathological microenvironments holds significant potential for advancing the treatment of orthopedic diseases.

N6-methyladenosine (m⁶A) methylation-the most prevalent RNA modification in eukaryotes-regulates gene expression via multiple pathways including splicing, nuclear export, stability, transcription, and translation, thereby facilitating vital biological functions [11–14]. The dynamics of m⁶A modification are controlled by a reversible enzymatic network comprising methyltransferases (writers), demethylases (erasers), and m⁶A-binding proteins (readers) [15]. In recent years, the advancement of high-throughput sequencing technologies has facilitated deeper investigations into the m⁶A methylation intricacies [16]. Numerous studies have indicated that m⁶A methylation is crucial for the regulation of osteogenic differentiation of BMSCs. It directly influences mRNA regulation related to BMSC differentiation, such as Runx2 and BMP2, or activates associated signaling pathways, thereby influencing osteogenesis [17–19]. Indirectly, it affects non-coding RNAs (ncRNAs), which include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), crucial in biological functions [20, 21]. These ncRNAs modulate BMSCs lineage differentiation by targeting transcription factors, signaling molecules, or other ncRNAs [22]. Aberrant m⁶A methylation is implicated in various orthopedic-related disorders such as OP, nonunion, and bone tumors [23, 24].

In this review, the principal enzymes that regulate m⁶A methylation modification and their significant biological functions identified to date are summarized. The specific molecular mechanisms through which m⁶A methylation influences BMSCs differentiation and bone repair by targeting mRNAs and ncRNAs are subsequently discussed. Additionally, the molecular biological roles of m⁶A modification in various orthopedic diseases are outlined (Fig. 1). This review offers a theoretical foundation for the intricate mechanisms of BMSCs in promoting osteogenesis or bone repair and provides a molecular-level focal point for treating various orthopedic diseases.

Enzymes and functions associated with m⁶A methylation

m⁶A methylation modification predominantly occurs within the 3' untranslated regions (3' UTRs), long introns, and near-specific coding region sequences, particularly in the DRACH sequences (D denotes A, G or U; R denotes A or G; and H denotes A, U, or C) [25, 26]. Following the discovery of the first m⁶A methylation transferase—methyltransferase-like 3 (METTL3)—subsequent research has progressively revealed several associated enzymes including "writers," "erasers," and "readers." These enzymes work in both temporal and spatial coordination to dynamically and reversibly regulate m⁶A methylation of RNAs, thereby playing a crucial role in a variety of biological processes [27] (Fig. 2).

m⁶A methyltransferases: writers

Proteins that introduce m⁶A methylation modification at specific RNA sites are known as writers. The m⁶A modification in the human transcriptome is predominantly orchestrated by the m⁶A methyltransferase complex (MTC), which is principally situated in the cell nucleus. The MTC is composed of diverse proteins and functionally splits into two subunits: the catalytic m⁶A-METTL complex (MAC) and the regulatory m⁶A-METTL-associated complex (MACOM) [28]. The core of MAC consists of METTL3 and METTL14, which together form the catalytic center [29]. METTL3 provides methyltransferase activity, while METTL14 assists in RNA binding [30, 31]. MACOM includes proteins such as Wilms tumor 1-associated protein (WTAP), Vir-like m⁶A methyltransferase associated (VIRMA/KIAA1429), RNA Binding Motif Protein 15/15B (RBM15/RBM15B), zinc finger CCCH domain-containing protein 13 (ZC3H13), and HAKAI (also known as CBLL1), none of which possess catalytic domains and thus do not exhibit any catalytic activity. However, they interact with the core complex to ensure the precision and efficiency of methylation [32]. WTAP directs the complex to nuclear speckles enriched with precursor mRNA processing factors [33]. VIRMA targets methylation to specific regions of mRNA, especially near the 3' UTR and stop codon [34]. Similarly, RBM15 and RBM15B recognize specific RNA sequences and recruit the methyltransferase complex to these sites [35]. ZC3H13 and HAKAI affect the localization and stability of the complex components [36-38].

In addition to the primary methyltransferase complex, other enzymes—including METTL16, METTL5, TRMT112, ZCCHC4, and METTL7A—have also been identified as m⁶A writers [39, 40]. METTL16 influences the splicing of various nuclear RNAs [41, 42]. METTL5 and TRMT112 collaborate in the nucleus to catalyze m⁶A modifications on 18 S rRNA, thereby affecting protein synthesis [43]. Similarly, ZCCHC4 methylates 28 S

Fig. 1 m⁶A methylation modification in the regulation of BMSC lineage differentiation, bone repair, heterotopic ossification, degenerative bone disease, RA, and bone tumors

rRNA, thereby enhancing ribosomal function [44, 45]. Additionally, METTL7A has been found to methylate specific long non-coding RNAs (lncRNAs) [46] (Fig. 2).

m⁶A demethylases: erasers

Proteins responsible for the removal of m⁶A modification are designated as erasers. The primary erasers identified to date are Fat mass and obesity-associated protein (FTO) and alkylation repair homolog 5 (ALKBH5). FTO primarily functions in the cell nucleus, where it binds to the intronic regions of precursor mRNA (pre-mRNA). It influences pre-mRNA processing through demethylase activity, affecting selective splicing and 3' UTR processing [47, 48]. Additionally, FTO regulates mRNA stability and translation efficiency by demethylating m⁶Am on the mRNA 5' cap, facilitated by its movement between the nucleoplasm and cytoplasm [49, 50]. ALKBH5 aligns with particular mRNA processing factors in the nucleolus, with its demethylation activity being vital for the proper assembly or modification of these factors, thereby

Fig. 2 Dynamic and reversible m⁶A methylation modification on RNAs and its functions. "Writers" are responsible for installing m⁶A and can be removed by "erasers." "Readers" recognize m⁶A sites and execute a series of complex biological processes

affecting mRNA nuclear export and RNA metabolism [51]. Recent studies have also shown that ALKBH1 and ALKBH3 possess m⁶A demethylase activity, with ALKBH3 specifically targeting m⁶A sites in tRNAs [52, 53] (Fig. 2).

m⁶A methylated reading proteins: readers

The m⁶A methylation modification recruits specific proteins termed readers, which recognize and interact with m⁶A modification sites on RNAs. This interaction substantially influences various post-transcriptional processes such as splicing, nuclear export, translation, stability, and degradation [54, 55].

The YT521-B homology (YTH) domain family proteins—including YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2—are well-known m⁶A readers [56]. Specifically, YTHDF1 enhances translation by increasing ribosome occupancy and can initiate and elongate translation in both cap-dependent and capindependent manners [57, 58]. It also modulates the stability of target RNAs [59]. Conversely, YTHDF2 facilitates the degradation of m⁶A-modified mRNAs, thus reducing mRNA stability and gene expression [13, 60]. YTHDF3 synergizes with YTHDF1 to promote protein synthesis and influences the decay of methylated mRNAs mediated by YTHDF2 [61]. Notably, YTHDC1, a nuclear m⁶A reader, affects RNA splicing and nuclear export [62, 63]. In contrast, YTHDC2, which possesses RNA helicase activity, enhances translation and regulates mRNA stability [64, 65].

Other significant m⁶A readers include the IGF2BP family proteins—IGF2BP1, IGF2BP2, and IGF2BP3—which stabilize target mRNAs and enhance their translation [66, 67]. Moreover, Heterogeneous nuclear ribonucleoproteins (hnRNPs), such as HNRNPA2B1, HNRNPC, and HNRNPG, recognize m⁶A modifications, influencing RNA splicing, stability, and transport [68–71]. Recently, proteins such as Prrc2a have been identified as m⁶A readers capable of stabilizing specific mRNAs involved in crucial cellular functions [72] (Fig. 2).

m⁶A methylation modulates osteogenesis by targeting mRNAs and NcRNAs

Osteogenesis is fundamentally dependent on the differentiation potential of BMSCs, characterized primarily by the formation of chondrocytes and osteoblasts, and the suppression of adipogenic differentiation [73, 74]. Additionally, the generation of osteoclasts is essential for balancing bone resorption and new bone formation [75]. These differentiation processes are governed by complex signaling pathways and gene expression patterns [76, 77]. m⁶A methylation, a crucial regulator within these pathways, affects bone formation by modulating the stability or translation of mRNAs and ncRNAs. In the following sections, we discuss the pivotal role of m⁶A methylation in bone formation.

Regulating osteogenic differentiation of BMSCs Effects on osteogenic differentiation by targeting mRNAs

Research has identified a comprehensive transcriptomewide m⁶A methylome in osteogenic differentiation. Differentially methylated genes are significantly enriched in signaling pathways related to BMSC osteogenesis [16]. Indeed, m⁶A methylation modification plays a pivotal role in the complex network governing osteogenic differentiation. The Wnt/ β -catenin signaling pathway is critical for osteogenic differentiation in stem cells. This pathway is activated when Wnt proteins bind to Frizzled receptors and their co-receptors, LRP5/6, stabilizing β-catenin. This stabilization facilitates the accumulation of β -catenin and nuclear translocation, where it binds to TCF/LEF transcription factors, activating essential genes for cell proliferation, differentiation, and survival, including the key osteogenic transcription factors Runx2 and Osterix [78]. Multiple writers are involved in the regulation of this pathway. For instance, overexpression of METTL3 in BMSCs enhances methylation modification levels, which upregulates osteogenic factors and activates the Wnt signaling pathway, including P-Gsk-3β, β-catenin, and Lef1, subsequently enhancing osteogenesis [79]. Additionally, METTL14 enhances the stability of PTPN6 mRNA in an m⁶A-dependent manner, increasing PTPN6 expression. PTPN6 interacts with glycogen synthase kinase 3β (GSK3 β), activating the Wnt signaling pathway and positively influencing osteogenic differentiation [80]. Furthermore, certain erasers and readers can also affect the activation of the Wnt/ β -catenin pathway. Advanced glycation end-products (AGEs) elevate FTO levels, reducing the m⁶A methylation of the sclerostin (SOST) transcript. Concurrently, YTHDF2 recognizes the m^6 A modification on the *SOST* transcript and reduces *SOST* mRNA stability. SOST acts as a negative regulator of BMSC osteogenic differentiation by inhibiting the Wnt/β-catenin pathway [81]. Conversely, YTHDF1 positively regulates the osteogenic differentiation of BMSCs through autophagy and the β-catenin pathway [82].

The BMP/Smad pathway is a pivotal signaling cascade that positively influences osteogenic differentiation. BMPs initiate the pathway by attaching to receptors on the cell membrane, subsequently leading to the phosphorylation of Smad proteins. These proteins then aggregate and translocate to the nucleus, where, in conjunction with other transcription factors, they promote the expression of genes essential for the transition of MSCs to osteoblasts [83]. METTL3, through the mRNA degradation activity of YTHDF2, decreases the expression of the negative regulators Smad7 and Smurf1 within the pathway. This reduction leads to pathway activation and promotes osteogenic differentiation [84]. The complex formed by PIWI-interacting RNA-36741 (piR-36741) and PIWIL4 reduces the methylation activity of METTL3, obstructing the m⁶A modification of BMP2 mRNA, preventing the degradation of BMP2 mRNA mediated by YTHDF2 and enhancing BMP2 expression to accelerate BMSC osteogenic differentiation [85]. Additionally, NOG interrupts BMP signaling by selectively inhibiting the activity of BMP-related Smad pathways (Smad1/5), thus inhibiting osteogenic differentiation. Conversely, METTL3 accelerates the degradation of m⁶A-marked NOG mRNA, thereby augmenting the process of osteogenic differentiation [86]. Similarly, METTL14 enhances the m⁶A methylation of *Smad1* mRNA, promoting its degradation in an IGF2BP1-dependent manner, which inhibits osteogenic differentiation in BSMCs [87].

The PI3K/AKT signaling pathway is widely recognized for its role in promoting osteogenic differentiation. The pathway is initiated by the activation of cell membrane receptors, leading to PI3K activation that, in turn, activates AKT. The activated AKT facilitates cell survival, proliferation, and differentiation through various mechanisms [88]. Notably, low METTL3 expression in BMSCs inhibits Akt phosphorylation, thereby disrupting PI3K-Akt signaling and hindering osteogenic differentiation [89]. Additionally, ALKBH5 decreases m⁶A methylation on *PRMT6* mRNA, hastening its degradation and consequently suppressing the PI3K/AKT pathway. This inhibition further reduces osteogenic differentiation [90].

Apart from these pathways, m⁶A modification also impacts BMSC osteogenic differentiation via the NF- κ B, MAPK, and AMPK pathways. For instance, METTL3 enhances m⁶A methylation of the *MYD88* mRNA, increases MYD88 expression, and activates the NF- κ B signaling pathway, which ultimately limits osteogenesis. This effect can be reversed by the ALKBH5 eraser [91]. Furthermore, diminished METTL3 expression in MSCs reduces protein synthesis of parathyroid hormone receptor-1 (Pth1r), thus decreasing translation efficiency and suppressing the activation of protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) pathways, leading to reduced osteogenic differentiation [92]. FTO interacts with the p-AMPK feedback loop, inducing mild endoplasmic reticulum (ER) stress that promotes osteogenic differentiation via AMPK activation and Dlx5-dependent Runx2 expression [93] (Table 1).

Effects on osteogenic differentiation by targeting NcRNAs

Non-coding RNAs such as lncRNAs and miRNAs interact with each other, as delineated by the competing endogenous RNA (ceRNA) hypothesis, which proposes a novel interaction mechanism among these RNAs. Specifically, lncRNAs and circRNAs serve as miRNA sponges, competing with target gene mRNAs for the same miRNAs at the miRNA response elements within the 3'UTR regions. This competition diminishes the suppressive effects of miRNAs on their target genes, thereby increasing the expression levels of these targets [94]. The methylation activity of METTL3 affects the stability of various lncRNAs, which subsequently influences osteogenic differentiation in stem cells via the ceRNA mechanism. For instance, METTL3 enhances the expression of LINC00657, which acts as a molecular sponge for miR-144-3p, thereby upregulating BMPR1B expression and promoting the osteogenic differentiation of BMSCs [95]. Additionally, METTL3 boosts the stability and expression of *lncRNA CUTALP* in an m⁶A-dependent manner, disrupting miR-30b-3p's inhibition of Runx2, thus enhancing osteogenic differentiation [96]. Similarly, METTL3-mediated methylation decreases the expression of lncRNA MIR99AHG, which targets miR-4660 to boost the osteogenic potential of BMSCs [97]. m⁶A-modified lncRNAs also directly influence osteogenic differentiation through the regulation of osteogenesis-related signaling pathways. METTL3 enhances osteogenesis by increasing m⁶A modification and expression of lnc-SNHG7, thereby activating the Wnt/ β -catenin signaling pathway [98]. Correspondingly, METTL3 can enhance the m⁶A modification and expression levels of lncRNA *RP11-44 N12.5*, which positively regulates the expression of serine/threonine-protein kinase 3. This elevation activates the MAPK signaling pathways (ERK, JNK, and p38), subsequently promoting osteogenic differentiation [99]. Furthermore, METTL3 promotes osteogenesis by enhancing the stability of lncRNA 4114 [100] (Fig. 3A).

In addition, m⁶A methylation modification impacts osteogenic differentiation in stem cells by altering miRNA maturation. METTL3 promotes the maturation of miR-7212-5p by binding microprocessor protein DGCR8 to pri-miRNA and inhibits osteogenic differentiation of BMSCs by targeting FGFR3 [101]. In contrast, METTL3-dependent m⁶A methylation suppresses the maturation of miR-196b-5p via DGCR8, thereby enhancing osteogenic differentiation of BMSCs [102]. METTL3 also upregulates Runx2 by impeding the maturation of *pre-miR-320* through methylation [103]. Similarly, METTL14 modulates the processing of pri-miR-103-3p and pri-miR-873 by DGCR8, increasing levels of mature miR-103-3p and miR-873 and consequently inhibiting osteogenic differentiation in BMSCs [104]. Furthermore, WTAP interacts with DGCR8, enhancing m⁶A-dependent maturation of pri-miR-29b-3p, which reduces histone deacetylase 4 expression and promotes osteogenesis [105]. WTAP also facilitates methylation of pri-miR-181a and pri-miR-181c, which, via maturation mediated by YTHDC1, decreases SFRP1 mRNA expression and

Table 1 m⁶A methylation modification regulates MSC osteogenic differentiation by targeting mRNAs

pathways	Regulators	Effects on	Mechanism	Species and	Ref.
	-	osteogenesis		cells	
Wnt/β-catenin	METTL3↑	promotion	P-Gsk-3β、β-catenin、 Lef1↑/Runx2↑	Rat BMSCs	[79]
	METTL14↑	promotion	PTPN6↑/ phosphorylation level of GSK-3β↑/β-catenin↑	Human BMSCs	[80]
	FTO↑、YTHDF2	promotion	AGEs†/FTO†/SOST↓/ Wnt/β-catenin↑	Mouse BMSCs	[81]
	YTHDF1↑	promotion	β-catenin↑/COL1 、 RUNX2↑	Human BMSCs	[82]
BMP/Smad	METTL3↓、YTHDF2	inhibition	LPS \uparrow /METTL3 \downarrow /Smad7 、Smurf1 \uparrow /Runx2 \downarrow	Mouse BMSCs	[84]
	METTL3、YTHDF2	promotion	piR-36741-PIWIL4 complex†/ m ⁶ A activity of METTL3/ BMP2†/ Smad1/5/8†	Human BMSCs	[85]
	METTL3↑	promotion	NOG↓/ Smad1/5↑	Human MSCs	[86]
	METTL14↑、IGF2BP1↑	promotion	SMAD1↑	Human BMSCs	[87]
PI3K/AKT	METTL3↓	inhibition	Akt phosphorylation↓	Rat BMSCs	[89]
	ALKBH5↑	inhibition	PRMT6↓/ p-AKT↓	Human BMSCs	[90]
NF-ĸB	METTL3↑	Inhibition	MYD88↑/ NF-ĸB↑	Human MSCs	[91]
	ALKBH5	promotion	MYD88↓/ NF-ĸB↓	Human MSCs	[91]
MAPK	METTL3↑	promotion	Pth1r↑/ PKA、 ERK↑	Rat BMSCs	[92]
АМРК	FTO↑	promotion	positive feedback loop existed between FTO and p-AMPK/ mild ER stress	Mouse BMSCs	[93]

Fig. 3 m⁶A methylation modification regulates MSC osteogenic differentiation by targeting ncRNAs. (**A**) METTL3 affects the stability of various lncRNAs to regulate osteogenic differentiation. STK3, serine/threonine-protein kinase 3. (**B**) m⁶A methylation modification influences osteogenic differentiation by altering miRNA maturation. HDAC4, histone deacetylase 4

contributes to osteogenesis [106]. Regarding other reader proteins, YTHDF2 targets m⁶A sites on *FBLN1* mRNA and decreases its stability and degrades the osteogenic and regenerative capacities of MSCs. Additionally, YTHDF2 implements a novel RNA degradation pathway by forming a complex with *miRNA-615-3p*, which interacts with m⁶A sites on *FBLN1* mRNA, thus reducing its stability and expression [107]. IGFBP3 stabilizes *miR-23a-3p* through m⁶A modification, resulting in the downregulation of *SMAD5* mRNA, which suppresses osteogenic differentiation and delays bone fracture healing [108] (Fig. 3B).

Regulating adipocyte differentiation of BMSCs

Serving as a shared progenitor for both osteoblasts and adipocytes, MSCs balance osteogenic and adipogenic differentiation through a dynamic interplay of coordination and competition that is influenced by a variety of regulatory factors. Factors that promote adipogenic differentiation often inhibit bone formation [109]. Additionally, abnormal adipogenic differentiation is associated with various orthopedic diseases, including femoral head necrosis [110]. m⁶A modification plays a crucial role in the regulation of adipogenic differentiation in BMSCs, thus maintaining bone homeostasis. Research has shown that METTL3 and FTO had opposite effects on this process: FTO enhanced adipocyte differentiation, while METTL3 negatively impacted adipogenesis [111, 112]. Both proteins influence this differentiation by affecting the stability and translation of target mRNAs in critical signaling pathways such as JAK-STAT and Wnt/β-catenin. Specifically, METTL3 increases the m⁶A modification of Janus kinase 1 (JAK1) mRNA, reducing its stability in a YTHDF2-dependent manner, leading to the inhibition of BMSC adipogenesis through JAK1-mediated phosphorylation. This phosphorylation activates the signaling and transcription activator factor (STAT) 5 and binds to the promoter of CCAAT/enhancer-binding protein (C/EBP) [113]. Furthermore, METTL3 reduces AKT protein through m⁶A modification, subsequently decreasing MSC adipogenesis [114]. By contrast, FTO decreases the m⁶A level of JAK2 mRNA, extends the half-life of JAK2 transcripts via YTHDF2, and enhances JAK2 expression and phosphorvlation. This increment leads to STAT3 phosphorylation and nuclear translocation, which accelerates the gene expression and transcription of $C/EBP\beta$, thereby promoting adipogenesis [115]. Conversely, ALKBH5 increases *TRAF4* mRNA and protein levels through its demethylase activity and activates the kinase activity of PKM2, which then stimulates the Wnt/ β -catenin pathway and inhibits adipogenic differentiation [116].

m⁶A methylation modification influences adipogenic differentiation by regulating the cell cycle. FTO decreases the methylation of cyclin A2 (CCNA2) and cyclin-dependent kinase 2 (CDK2) mRNA, enhancing their stability through YTHDF2 and increasing their expression. This accelerates mitotic clonal expansion (MCE), promoting adipogenesis [117, 118]. Similarly, METTL3 inhibits cyclin D1 by facilitating YTHDF2-mediated mRNA degradation, thereby delaying the cycle and reducing adipogenesis of BMSCs [119]. Research has shown that ZFP217 directly binds to the FTO promoter, boosting FTO expression. Moreover, ZFP217 interacts with YTHDF2, disrupting its binding to m⁶A mRNA and enhancing the interaction between FTO and m⁶A mRNA, which increases adipogenic differentiation [120]. ZFP217 also suppresses METTL3 expression, further enhancing adipogenesis [119]. Beyond the role of FTO, WTAP collaborates with METTL3 and METTL14 to actively control adipogenic differentiation by upregulating CCNA2 and accelerating the cell cycle transition during MCE [121].

In terms of other regulatory mechanisms, m⁶A modification enhances the translation of PNPLA2 and mitochondrial carrier homolog 2 via YTHDF1, while reducing the expression of uncoupling protein-2, collectively promoting adipogenic differentiation [122, 123]. Besides, FTO influences adipogenic differentiation by modulating m⁶A levels near splice sites, altering the splicing of the adipogenic regulator *RUNX1T1* [124]. Subsequent studies indicated that FTO promoted adipogenesis by increasing the expression of the adipogenic isoform of *RUNX1T1* [125]. Furthermore, growth differentiation factor 11 augments FTO expression through a C/EBP α dependent mechanism, wherein FTO demethylates *PPARG* mRNA, enhancing its expression and thus promoting adipogenesis [23] (Table 2).

Regulating chondrocyte differentiation of BMSCs

The differentiation of BMSCs into chondrocytes is essential for the repair of cartilaginous tissues in joint and fracture healing, particularly within native bone healing mechanisms. During fracture repair, BMSCs initially migrate to the injury site and differentiate into chondrocytes. These chondrocytes produce a cartilaginous matrix that acts as a temporary repair tissue, stabilizing the fracture site and promoting new bone formation [126]. METTL3-mediated m⁶A modification enhances

Differentiation Fate	Regulators	Effects	Mechanism	Species and cells	Ref.
adipogenic differentiation	METTL3↑、YTHDF2	inhibition	JAK1↓/ STAT5、C/EBPβ↓	Pig BMSCs	[113]
	METTL3↓	promotion	AKT↑	AML-MSCs	[114]
	FTO1, YTHDF2	promotion	JAK2↑/ p-STAT3↑/ C/EBPβ↑	Porcine primary preadipocytes	[115]
	ALKBH5↑	inhibition	TRAF4↑/ kinase activity of PKM2↑/ β-catenin↑	Human MSCS	[116]
	FTO†、YTHDF2	promotion	CCNA2、CDK2↑/MCE↑	Mouse 3T3-L1 pre-adipocytes	[117, 118]
	METTL3↑、 YTHDF2	inhibition	ZFP217 ↓/ METTL3↑/cyclin D1↓	Mouse 3T3-L1 pre-adipocytes	[119]
	WTAP-METTL3-METTL14↑	promotion	CCNA2↑/ MCE↑	Mouse 3T3-L1 pre-adipocytes	[121]
	YTHDF1	promotion	PNPLA21、MTCH21、	Pig intramuscular preadipocytes	[122, 123]
	FTO	promotion	pro-adipogenic short isoform of RUNX1T1↑	Mouse primary adipocytes	[125]
	FTO	promotion	GDF11-C/EBPa↑/FTO↑/ PPARG↑	Human BMSCS	[23]
chondrogenic differentiation	METTL3↑	promotion	MMP3、MMP13、GATA3↑	Rat SMSCs	[127]
	METTL3↑、YTHDF2、 eEF1α-1	promotion	Sox9↑	Rat BMSCs	[128]
	YTHDF1↑	promotion	Dmp1↑	Mouse chondrocyte line ATDC5	[129]
	YTHDF1↑	promotion	Wnt/β-catenin↑	Human BMSCS	[131]
	METTL3↑、YTHDC1	promotion	CircRNA3634↑/ miR-124486-5↓/MAPK1↑	C nippon antlers cells	[130]

Table 2 m⁶A methylation modification regulates MSC adipogenic and chondrogenic differentiation

AML: acute myeloid leukaemia; UCP2: uncoupling protein-2; MTCH2: mitochondrial carrier homolog 2

SMSCs: Synovium-derived mesenchymal stem cells

the expression of MMP3, MMP13, and GATA3, supporting MSC differentiation into chondrocytes through posttranscriptional regulation [127]. Furthermore, METTL3 works in conjunction with Nsun4 (with m5C catalytic activity) to target the 3'-UTR of Sox9 mRNA and recruits proteins such as YTHDF2 and eEF1\alpha-1 to augment Sox9 translation, thereby significantly advancing chondrogenic differentiation [128]. Dentin matrix protein 1 (Dmp1) mRNA is another direct target of METTL3mediated m⁶A modification. Under METTL3 catalysis, YTHDF1 stabilizes Dmp1 mRNA, facilitating hypertrophic differentiation of chondrocytes [129]. METTL3 also mediates m⁶A modification near the splicing sites of CircRNA3634, while the m⁶A reader YTHDC1 promotes the nuclear export of CircRNA3634 in an m⁶A-dependent manner. CircRNA3634 acts as a molecular sponge for miR-124486-5, competitively binding to miR-124486-5 and elevating MAPK1 expression, thus supporting chondrocyte differentiation, proliferation, and migration [130]. Moreover, YTHDF1 promotes chondrogenesis by activating the Wnt/ β -catenin signaling pathway [131] (Table 2).

Indirectly regulating osteogenesis in BMSCs via effect on osteoclast function

Osteoclasts originate from the monocyte/macrophage lineage of hematopoietic stem cells. Regulating osteoclast activity can alter the equilibrium between bone resorption and formation. For instance, inhibiting excessive osteoclast activity prevents OP by fostering an environment conducive to osteoblast activity and new bone formation. Moreover, osteoclasts indirectly influence the behavior of BMSCs by secreting pro-inflammatory and growth factors such as PDGF-B, that promote their differentiation into osteoblasts [132]. METTL3, aided by YTHDF2, diminishes both the stability and expression of the cell fusion-specific gene Atp6v0d2 mRNA. Concurrently, the methylation activity of METTL3 decreases nuclear retention of Traf6T mRNA and its transcription products, thereby speeding up the activation of the MAPK, NF-kB, and PI3K-AKT signaling pathways. These mechanisms collectively intensify osteoclast differentiation and function, potentially leading to bone homeostasis disorders and impeding osteogenesis [133]. Additionally, low expression of METTL3 enhances the stability of Nos2 mRNA through a YTHDF1-dependent mechanism, exacerbating iNOS/ NO-mediated mitochondrial dysfunction that inhibits osteoclast differentiation [134]. METTL3 enhances osteoclast formation by boosting m⁶A methylation and the post-transcriptional upregulation of CHI3L1 [135]. Both METTL3 and ALKBH5 modulate RNA-protein interactions through m⁶A-dependent RNA structural remodeling [71]. Research has shown that Circ_0008542 disrupts *miR-185-5p*'s inhibition of *Tnfrsf11a* (*RANK*) mRNA through its sponging action, thereby amplifying osteoclast differentiation. METTL3 can modify the spatial structure of *circ_0008542* through the "m⁶A switch" mechanism to increase its sponging effect, while ALKBH5 counteracts this modification [136]. METTL14, with the support of Hu antigen R (HuR), stabilizes GPX4 mRNA post-transcriptionally through m⁶A modification, inhibiting RANKL-induced osteoclast differentiation [137].

In addition to writers, FTO substantially impeded osteoclast differentiation during bone regeneration, thus improving the efficiency of this process [138]. The demethylase activity of FTO enhances the phosphorylation and nuclear translocation of NF-KB p65 protein, increasing the expression of downstream targets such as c-FOS and NFATc1, which are pivotal in promoting osteoclast differentiation [139]. Furthermore, FTO augments the stability and expression of CCNA2 and CDK2 mRNA, key S-phase proteins in osteoclast precursors, through a YTHDF2-dependent mechanism. This action not only facilitates their proliferation and differentiation but also diminishes apoptosis [140]. Regarding reader proteins, YTHDF1 heightens the activation of ER stressrelated pathways such as PERK, IRE1a, and ATF6 and elevates the stability of Tnfrsf11a mRNA. Consequently, this stability fosters enhanced phosphorylation of crucial proteins in the NF-KB, MAPK, and PI3K-AKT pathways, thereby promoting osteoclast differentiation [141]. In contrast, YTHDF2 obstructs osteoclast formation through the NF-κB and MAPK pathways [142]. Additionally, YTHDC1 collaborates with HuR to increase the stability and transcription of PTPN6 mRNA by identifying m⁶A sites, which in turn inhibits osteoclast differentiation [143] (Table 3).

The role of m⁶A methylation in orthopedic diseases

m⁶A is being increasingly recognized as a critical epigenetic regulator with multifaceted roles in bone metabolism and disease progression with respect to the pathogenesis of orthopedic diseases. For example, abnormal m⁶A regulation can impair osteoblast function and increase the activity of osteoclasts and adipocytes, thereby accelerating bone loss. Additionally, m⁶A methylation plays a pivotal role in other orthopedic conditions, including OA and bone tumors. It influences disease progression and treatment responses by regulating inflammatory and apoptotic pathways and other key biological processes in tumor cells. The current challenge involves mapping the complete m⁶A regulatory network and deciphering its dynamic changes in specific orthopedic disease contexts, thus enabling more precise interventions in this critical epigenetic process. In this section, we summarized the latest findings on the role of m⁶A methylation in

Regulators	Effects on	Mechanism	Species and cells	Ref.
METTL3↑、YTHDF2	promotion	Atp6v0d2↓, retention of Traf6 in the nucleus↓ / MAPK↑、NF-kB↑、PI3K-AKT↑	Mouse RAW264.7 cell lines	[133]
METTL3↓、YTHDF1	inhibition	Nos21/ iNOS/NO1/mitochondrial dysfunction1	Mouse BMMs	[134]
METTL3↑	promotion	EGR1 1/ METTL3 1/ CHI3L1	Mouse BMMs	[135]
METTL3↑、 ALKBH5↓	promotion	circ_0008542†/ miRNA-185-5p↓/ RANK†	Mouse RAW264.7 cell lines	[136]
METTL14↑	inhibition	GPX4↑	Mouse BMMs	[137]
FTO†	promotion	phosphorylation and nuclear translocation of NF-кВ p65↑/ c-FOS↑、NFATc1↑	Mouse BMMs and RAW264.7 cell lines	[139]
FTO↑、YTHDF2	promotion	CCNA2↑、CDK2↑	Mouse BMMs	[140]
YTHDF1↑	promotion	LPS†/ YTHDF1†/ Tnfrsf11a†/NF-кВ†、 MAPK †、 PI3K-AKT†	Mouse RAW264.7 cell lines	[141]
YTHDF2↑	inhibition	NF-ĸB↓、 MAPK↓	Mouse RAW264.7 cell lines	[142]
YTHDC1↑	inhibition	PTPN6↑	Mouse BMMs	[143]

Table 3	m°A meth	vlation modi	ification regu	lates osteoc	lastic differentiation
		/			

BMMs: bone marrow-derived macrophages

the pathogenesis of OA, degenerative diseases, and bone tumors. These insights will enhance our understanding of the molecular mechanisms underlying orthopedic diseases and highlight potential molecular targets for developing new therapeutic strategies.

Heterotopic ossification

In pathological conditions, ectopic ossification significantly diverges from normal bone formation, with bone tissue abnormally developing in non-skeletal tissues such as muscles and tendons [144]. m⁶A-mediated epigenetic modification plays a role in regulating both the incidence and progression of ectopic ossification, which predominantly occurs in ligaments. For example, studies have demonstrated that BMP4 upregulated by high expression of METTL3 and OCS3 and downregulated by low expression of FTO contributed to ectopic ossification of the posterior longitudinal ligament and ligamentum flavum [145, 146]. ALKBH5 promotes the osteogenic differentiation of ligamentum flavum cells via two mechanisms: it removes methylation from BMP2 mRNA, thereby enhancing BMP2 expression, and it activates p-AKT [147]. Additional research has revealed two distinct molecular mechanisms involved in osteogenic differentiation in primary ligament fibroblasts: the m⁶A methylation modification and the ceRNA mechanism. METTL3 specifically increases the level of lncRNA XIST1 through m⁶A methylation. Acting as a molecular sponge, XIST1 prevents the inhibition of miR-302a-3p to ubiquitin-specific protease 8, thus facilitating osteogenic differentiation via the ceRNA mechanism [148] (Fig. 4A). m⁶A-mediated ectopic ossification is also observed in blood vessels, where ALKBH1-mediated DNA demethylation increases Oct4 binding to the BMP2 mRNA promoter, enhancing BMP2 transcription and leading to osteogenic reprogramming of vascular smooth muscle cells and progression of vascular calcification [149] (Fig. 4B). Additionally, overexpression of METTL3 facilitates *TWIST1* mRNA methylation, promoting its degradation in a YTHDF2-dependent manner and decreasing TWIST1 expression. This reduction augments osteogenic differentiation in human aortic valve interstitial cells and advances aortic valve calcification [150] (Fig. 4C).

Degeneration of bones and joints

Degenerative changes in bones and joints entail pathological alterations in which skeletal and joint tissues progressively deteriorate and lose function because of aging or disease. This category encompasses OP, OA, and disc degeneration [151]. In this process, m⁶A modification significantly impacts RNA stability and translation; regulates critical gene expression; and influences cell differentiation, inflammatory responses, and the synthesis and degradation of the extracellular matrix (ECM).

Osteoarthritis

Osteoarthritis is characterized by degenerative damage to joint cartilage and inflammation. Abnormal m⁶A modification of certain ncRNAs and mRNAs in chondrocytes disrupts their function by promoting degeneration and apoptosis, thereby accelerating degenerative changes in the cartilage [152]. Specifically, increased production of interleukin-1 β (IL-1 β) is a principal activator in the progression of OA. In this process, METTL3 elevated by IL-1 β induction interacts with DGCR8 to facilitate the maturation of *miR-126-5p*, which in turn targets and reduces *PIK3R2* mRNA expression, culminating in chondrocyte degeneration, with PIK3R2 acting as an inhibitory regulator within the PI3K/Akt pathway [153, 154]. METTL3-mediated m⁶A modification also increases the expression of lncRNA *IGFBP7-OT*, reducing the presence

Fig. 4 m⁶A methylation modification in heterotopic ossification. (**A**) m⁶A methylation modification regulates the occurrence of ligament ossification. OPLL, ossification of posterior longitudinal ligament; OLF, ossification of ligamentum flavum. USP8, ubiquitin-specific protease 8. (**B**) m⁶A methylation modification regulates vascular calcification. (**C**) m⁶A methylation modification regulates aortic valve calcification

of DNMT1 and DNMT3a at the IGFBP7 promoter. This reduction decreases methylation and enhances IGFBP7 expression, promoting chondrocyte degeneration [155]. Additionally, the YTHDF2-HRSP12-RNase P/MRP complex cleaves m⁶A-modified *circRNA RERE*, catalyzed by METTL3. This cleavage can decrease the expression of IRF2BPL by targeting *miR-195-5p*, thereby inhibiting the ubiquitination and degradation of β -catenin and promoting chondrocyte apoptosis [156]. Research has also shown that METTL3 stabilizes Bcl2 mRNA via YTHDF1, which in turn suppresses chondrocyte autophagy and apoptosis [157]. FTO and ALKBH5 exhibit a protective role in the progression of OA, and their reduced levels significantly accelerate cartilage damage. For instance, FTO reduces the m⁶A level of *pri-miR-3591*, inhibiting its maturation. This alleviates the inhibition of *miR-3591-5p* on PRKAA2, thereby reducing cartilage damage in OA [158]. FTO-mediated demethylation of m⁶A modification also downregulates *lncRNA AC008440.5* transcription, diminishing its sponging of *miR-328-3p*. This reduction inhibits AQP1 and ANKH expression and maintains chondrocyte vitality and resists apoptosis [159]. Conversely, ALKBH5 stabilizes *lncRNA HS3ST3B1-IT1* through its demethylase activity and interaction with YTHDF2, blocking ubiquitination-mediated degradation of HS3ST3B1, thus enhancing chondrocyte vitality [160] (Table 4).

m⁶A modification can also influence the progression of OA by regulating the degradation of ECM. Specifically, abnormal upregulation of METTL3 and WTAP exacerbates the pathological changes in OA by differentially regulating this degradation process. For instance, METTL3 activates NF- κ B signaling, thereby enhancing ECM degradation [161]. METTL3 also increases the

Table 4 m⁶A methylation modification in OA

Pathological Factors	Regulators	Effects	Mechanism	Species and cells	Ref.
Cartilage injury	METTL3↑	promotion	IL-1β†/ METTL3†/ miR-126-5p†/ PIK3R2↓/ PI3K/Akt↓	Human primary chondrocytes	[153, 154]
	METTL3↑	promotion	IncRNA IGFBP7-OT↑/ IGFBP7↑	Human primary chondrocytes	[155]
	METTL3↑、YTHDF2	promotion	circRNA RERE↓/ miR-195-5p†/ IRF2BPL↓/β-catenin†	Human chondrocytes	[156]
	METTL3↑、YTHDF1	inhibition	Bcl2↑	Mouse chondrocyte line	[157]
	FTO↑	inhibition	miR-3591-5p↓/ PRKAA2↑	Human articular chondrocytes	[158]
	FTO↑	inhibition	IncRNA AC008440.5↓/ miR-328-3p†/ AQP1↓、ANKH↓	Human primary chondrocytes	[159]
	ALKBH5↑、 YTHDF2	inhibition	IncRNA HS3ST3B1-IT1†/ HS3ST3B1†	Human primary chondrocytes	[160]
Extracellular matrix degradation	METTL3↑	promotion	NF-ĸB↑	Mouse chondrocyte line	[161]
	METTL3↑	promotion	IncRNA LINC00680↑/ SIRT1↑	Human chondrocytes	[162]
	METTL3↑	promotion	MMP1↑、MMP3↑、TIMP-1↓、TIMP-2↓	Human chondrocytes	[163]
	WTAP↑	promotion	miR-92b-5p↑/ TIMP4↓	Human primary chondrocytes	[164]
Inflammatory reaction	METTL3↑	promotion	SOCS2↓/ JAK2/STAT3↑	Human primary chondrocytes	[167]
	METTL3↓	inhibition	miR-1208↑/METTL3↓/NLRP3↓	Human articular chondrocytes	[168]
	WTAP†	promotion	FRZB↓/ Wnt/β-catenin↑	Human chondrocytes	[169]
	FTO↑	inhibition	miR-515-5p↑/ TLR4↓/ MyD88/NF-ĸB↓	Human chondrocytes	[170]
	ALKBH5↑	promotion	miR-654-3p↓/TNFRSF9↑/ NF-кВ↑	Human primary chondrocytes	[171]
	IGF2BP3↑	promotion	macrophage M1 polarization↑	Mouse BMDMs	[172]

BMDMs: Bone marrow derived macrophages

expression of lncRNA *LINC00680*, which binds to m⁶A sites on the 3'-UTR of *SIRT1* mRNA, enhancing its stability and accelerating the degradation process [162]. Moreover, METTL3 influences ECM degradation by balancing TIMPs and MMPs in OA, such as increased expression of MMP1 and MMP3 and decreased expression of TIMP-1 and TIMP-2 [163]. Similarly, WTAP-mediated m⁶A modification promotes the maturation of *miR-92b-5p*, which subsequently strengthens its inhibition of TIMP4, leading to ECM degradation [164] (Table 4).

Although OA is often categorized as a non-inflammatory joint disease, inflammation plays a critical role in its progression. During cartilage degeneration, damaged cartilage cells and the ECM release molecular signals that trigger inflammatory cells to produce cytokines and enzymes. This exacerbates cartilage damage and accelerates the development of OA [165]. m⁶A methylation modification regulates the immune microenvironment in OA, particularly in terms of immune cell infiltration. YTHDF2 shows the strongest positive correlation with Treg cells, while IGFBP2 is negatively correlated with dendritic cells [166]. In addition, m⁶A modification is pivotal in regulating inflammatory responses. For instance, METTL3 interacts with RPL38 to inhibit SOCS2 expression through m⁶A modification. In OA, the abnormal elevation of METTL3 leads to a decrease in SOCS2, which intensifies the activity of the JAK2/ STAT3 pro-inflammatory pathway, thereby accelerating the progression of OA [167]. Notably, extracellular vesicles derived from human umbilical cord MSCs contain miR-1208, which targets METTL3, reducing m⁶A levels and NLRP3 mRNA expression, and subsequently diminishing inflammation [168]. Besides, augmented WTAP activity enhances FRZB mRNA hypermethylation, decreases FRZB expression, and activates the Wnt/βcatenin pathway, thereby aggravating inflammation [169]. m⁶A modification mediating the expression of miRNAs is involved in the regulation of pro-inflammatory pathways associated with OA. For instance, FTO interacts with DGCR8 to accelerate the m⁶A-dependent maturation of *miR-515-5p*, which targets *TLR4*, deactivating the MyD88/NF-KB pathway and inhibiting synovial inflammation [170]. Conversely, ALKBH5 modulates chondrocyte inflammation by reducing miR-654-3p levels through m⁶A-dependent demethylation, which elevates the expression of TNFRSF9, enhancing inflammation via the NF-KB pathway [171]. Additionally, high levels of IGF2BP3 expression supports macrophage M1 polarization, further promoting inflammation in the osteoarthritic synovium [172] (Table 4).

Osteoporosis

Osteoporosis is characterized by reduced bone density, impaired bone microarchitecture, and increased fracture risk. These pathological changes are closely associated with increased activity and differentiation of osteoclasts, as well as decreased activity and differentiation of osteoblasts, regulated by bone metabolism [173]. In this intricate regulatory landscape, m⁶A methylation modification plays a pivotal role by controlling the expression of critical genes involved in bone metabolism, thereby influencing cellular functionality and the progression of OP. For instance, Runx2, a vital transcription factor in bone development, boosts osteoblast differentiation but is reduced in OP. m⁶A-related proteases can reverse this process by increasing Runx2 expression [174]. IGF2BP1 enhances the stability and expression of Runx2 mRNA by recognizing m⁶A sites catalyzed by METTL3 [175, 176]. YTHDF1, enhances the translation of ZNF839 mRNA in an m⁶A-dependent manner, wherein it interacts with Runx2 and further increases Runx2 transcriptional activity, thereby boosting the osteogenic differentiation of BMSCs [177]. Similarly, FTO reduces m⁶A methylation on RBM4 mRNA, enhancing RBM4 expression, which promotes the inclusion of *Runx2* exon 5 to boost osteogenic differentiation [178]. In addition to Runx2, m⁶A modification also regulates the expression of other osteogenesis-related mRNAs to influence OP. Especially, METTL3 stabilizes ACLY and SLC25A1 mRNAs through m⁶A-IGF2BP2/3 interactions, which enhances their expression and fosters osteogenic differentiation [179]. Conversely, disproportionate elevation of METTL3 accelerates OP progression and reduces osteoblast function in diabetes-associated OP by activating the ASK1-p38 pathway [180]. FTO reduces its stability in a YTHDF1-dependent manner by demethylating the m⁶A sites on the 3'-UTR of PPARG mRNA, thereby enhancing osteogenesis [181]. FTO also enhances the stability of Hspa1a mRNA (encoding Hsp70) and in turn inhibits the NF-kB pathway, protecting osteoblasts from genotoxicity and cell death while maintaining bone mass [182]. In addition, the enhanced effect of osteoclasts also significantly promotes the progression of OP. In postmenopausal OP, follicle-stimulating hormone (FSH)-induced CREB phosphorylation upregulates METTL3, enhancing CTSK mRNA stability and translation and increasing osteoclast migration [183]. Therapeutic agents such as zoledronic acid increase METTL14 levels, which destabilizes NFATc1 mRNA in a YTHDF2-dependent manner and inhibits osteoclast differentiation [184]. METTL14 also activates the Wnt/ β -catenin pathway by upregulating TCF1 and SIRT1 and reducing osteoclast activity, thus slowing OP progression [185, 186]. Moreover, FTO may prevent diabetes-related bone loss by inhibiting TLR4driven osteoclast differentiation [187] (Table 5).

In addition to directly regulating the activity of osteoblasts and osteoclasts, m⁶A methylation affects the progression of OP through alternative pathways. For example, m⁶A modification can enhance the adipogenic differentiation of BMSCs, potentially inhibiting bone formation [188, 189]. Research has also shown that elevated prednisone levels during pregnancy can increase m⁶A modification, activate mitochondrial autophagy, and decrease FNDC5/irisin expression in skeletal muscle. This cascade of events may lead to increased bone fragility in adult offspring. S-adenosylhomocysteine (SAH), an inhibitor of m⁶A activity, has the potential to reduce m⁶A modification in the transcriptome, thereby mitigating these processes and potentially reversing adverse skeletal development in fetuses [190].

Intervertebral disc degeneration

Intervertebral disc degeneration is a multifaceted pathological condition characterized by the degradation of structures such as the NP, annulus fibrosus, and cartilage endplate. Recent advances in high-throughput sequencing and bioinformatics have identified alterations in m⁶A modification patterns that occur during IVDD progression [191]. These modifications significantly affect the regulation of disc cell proliferation, apoptosis, and ECM disorders. For instance, with respect to the effect on nucleus pulposus cells (NPCs), m⁶A-mediated methylation by abnormally elevated METTL3 enhances the stability and expression of SIAH1 mRNA, which targets and ubiquitinates XIAP, promoting aging and apoptosis [192]. Similarly, an atypical increase in METTL14 levels enhances the stability of NLRP3 mRNA via an IGF2BP2mediated mechanism, elevating IL-1ß and IL-18 levels and hastening the apoptosis of NPCs [193]. METTL14mediated elevation of DIXDC1 levels also speeds up NPC degeneration and aging by activating the canonical Wnt pathway [194]. Furthermore, oxidative stress escalates apoptosis in NPCs by reducing MAT2A expression via METTL16-dependent m⁶A modification [195]. ALKBH5 and YTHDF2 increase FIP200 mRNA and DNMT3B mRNA expression through m⁶A-dependent modification. Research has shown that although ALKBH5 expression was elevated in IVDD, it still exhibited a dual nature. FIP200 promotes autophagic flux, thus reducing apoptosis in compressed NPCs, while DNMT3B accelerates degeneration by inhibiting E4F1 expression [196, 197]. Moreover, m⁶A modification alters the expression of ncRNAs affecting NPC activity. For instance, TNF- α enhances the expression of METTL3, which subsequently enhances miR-143-3p maturation through its methyltransferase activity. MiR-143-3p downregulates SOX5 transcription, accelerating degeneration in NPCs [198]. Similarly, METTL14 works together with DGCR8 to mature miR-34a-5p. This miRNA markedly reduces SIRT1 mRNA translation, diminishing its expression, and accelerating the aging of NPCs [199]. The degradation of IncRNA NORAD, mediated by unusually high levels of WTAP and YTHDF2, reduces the sequestration of PUM-ILIO proteins, thereby intensifying PUM1/2 activity,

Diseases	Regulators	Effects	Mechanism	Species and cells	Ref.
Osteoporosis	METTL3↑、IGF2BP1	inhibition	Runx2↑	Human BMSCs	[175,
					176]
	YTHDF1↑	inhibition	ZNF839†/ Runx2†	Human BMSCs	[177]
	FTO↑	inhibition	RBM4†/ Runx2†	Human DPSCs	[178]
	METTL3↑、IGF2BP2/3	inhibition	ACLY↑、SLC25A1↑	Human DPSCs	[179]
	METTL3↑	promotion	ASK1-p38↑、SLC7A11↑、GPX4↑	Mouse MC3T3-E1 cells	[180]
	FTO↑、YTHDF1	inhibition	PPARG↓	Human MSCs	[181]
	FTO ↑	inhibition	Hsp70↑/NF-κB↓	Mouse Osteoblasts	[182]
	METTL3↑	promotion	FSH†/ CREB phosphorylation†/ METTL3†/ CTSK†	Mouse Osteoblasts	[183]
	METTL14↑、YTHDF2	inhibition	zoledronic acid↑/ METTL14↑/ NFATc1↓	Mouse RAW264.7 monocytic cells	[184]
	METTL14↑	inhibition	TCF1↓、SIRT1↓/ Wnt/β-catenin↑	Mouse BMSCs and BMM s	[185, 186]
	FTO†	inhibition	TLR4↓	Mouse RAW264.7 monocytic cells	[187]
IVDD	METTL3↑	promotion	SIAH1↑/ XIAP↓	Human NPCs	[192]
	METTL14↑、IGF2BP2	promotion	NLRP3↑/ IL-1β↑、 IL-18↑	Human NPCs	[193]
	METTL14↑、IGF2BP1	promotion	DIXDC1↑/ Wnt/β-catenin↑	Human NPCs	[194]
	METTL16↑	promotion	oxidative stress↑/ METTL16↑/MAT2A↓	Human NPCs	[195]
	ALKBH5↑、YTHDF2	inhibition	FIP200↑/ autophagic flux↑	Human NPCs	[196]
	ALKBH5↑、YTHDF2	Promotion	DNMT3B↑/E4F1↓	Human NPCs	[197]
	METTL3↑	Promotion	TNF-a↑/ METTL3↑/ miR-143-3p↑/ SOX5↓	Human NPCs	[198]
	METTL14↑	Promotion	miR-34a-5p↑/ SIRT1↓	Human NPCs	[199]
	WTAP1, YTHDF2	Promotion	IncRNA NORAD↓/PUMILIO sequestraion↓/ PUM1/2 activity†/ E2F3↓	Human NPCs	[200]
	YTHDF2↑	inhibition	CirGPATCH2L↓/ phosphorylation of TRIM28†/ p53†	Human NPCs	[201]
	METTL3↑	Promotion	SOX9↓/ COL2A1↓	Human endplate chondrocytes	[202]
	METTL 31	Promotion	miR-126-5pt/PIK3R2.L/PI3K/AKT.L	Human endplate chondrocytes	[154]

 Table 5
 m⁶A methylation modification in OP and intervertebral disc degeneration (IVDD)

DPSCs: human dental stem pulp cells METTL3; NPCs: nucleus pulposus cells; COL2A1: type II collagen a1

which suppresses E2F3 mRNA expression and accelerates aging in NPCs [200]. Additionally, CircGPATCH2L eliminates phosphorylation of TRIM28, which prevents p53 degradation, leading to DNA damage and increased apoptosis in NPCs. Concurrently, the YTHDF2-RPL10-RNase P/MRP complex targets and degrades m⁶Amethylated circGPATCH2L, slowing IVDD progression [201]. Augmented levels of m⁶A methylation can contribute to the degeneration of cartilaginous endplates. For example, METTL3 facilitates the methylation of SOX9 mRNA, which destabilizes SOX9 mRNA and diminishes the expression of type II collagen $\alpha 1$ chain, reducing the tensile strength of endplate chondrocytes and accelerating disc degeneration [202]. Moreover, METTL3 aids in the maturation of *miR-126-5p* through m⁶A methylation. MiR-126-5p inhibits PIK3R2 expression, disrupting the PI3K/AKT signaling pathway and further promoting degeneration in endplate chondrocytes [154] (Table 5).

Rheumatoid arthritis

In orthopedic research, m⁶A modification is crucial in regulating inflammation, particularly in the initiation and

progression of RA [203]. Fibroblast-like synoviocytes are critical in RA, essential to both synovial hyperplasia and inflammatory responses. The m6A modification influences the pathological behavior of FLSs by regulating the stability and translation of key genes associated with cell proliferation, migration, and the release of inflammatory mediators. For instance, increased m⁶A methylation of TGM2 mRNA promotes the proliferation of RA-FLSs by stimulating DNA replication, facilitating cell cycle transition, and activating the NF-ĸB pathway to inhibit apoptosis [204]. Despite the observed decrease in METTL14 concentrations in individuals with RA, this factor demonstrates bifunctional characteristics. METTL14 increases the expression of LASP1 and TNFAIP3 via m⁶A modification. LASP1 activates the SRC/AKT signaling pathway, thereby augmenting the activity and inflammatory responses of FLSs. Conversely, TNFAIP3 reduces inflammatory responses by disrupting the NF-KB signaling pathway [205, 206]. Furthermore, elevated expression of METTL3 enhances m⁶A modification of AMIGO2 mRNA and PGC-1 α mRNA. With YTHDC2 involvement, AMIGO2 mRNA displays increased expression,

Page 15 of 27

enhancing the proliferation, migration, and invasiveness of FLSs. In contrast, PGC-1a mRNA undergoes rapid degradation by YTHDF2, causing mitochondrial dysfunction and intensifying inflammatory responses in RA [207, 208]. Additionally, WTAP upregulates lncRNA MAPKAPK5-AS1 expression through demethylation, disrupting the inhibition of SIRT1 by miR-146a-3p. As a result, SIRT1 inhibits the NF-KB pathway, leading to apoptosis in synovial cells and reduced inflammation in RA [209]. For erasers, FTO and ALKBH5 exhibit opposite expression patterns and functions in RA. FTO exhibits low expression levels and suppresses NSUN2 expression, increases SFRP1 protein levels, and inhibits the Wnt/β-catenin pathway via its demethylase activity, thereby mitigating the progression of RA [210]. Still, upregulated ALKBH5 increases the stability and protein expression of CH25H and MYO1C mRNAs by its demethylase activity, leading to cytoskeletal remodeling and enhanced migration and invasion of FLSs [211, 212]. ALKBH5 also downregulates the stability and expression of *JARID2* mRNA, facilitated by IGF2BP3, and reduces *NLRP3* mRNA degradation under YTHDC2 regulation. These mechanisms collectively advance the proliferation, migration, and invasion of FLSs, intensifying the severity of arthritis [213, 214] (Fig. 5).

Bone tumors

Osteosarcoma

During the development of osteosarcoma, m⁶A methylation modification markedly affects cancer cell behavior, mainly mediated by methyltransferases and associated readers. METTL3, a central m⁶A methyltransferase, significantly regulates the malignant phenotype of osteosarcoma by modifying various mRNAs and ncRNAs. On the one hand, METTL3 enhances cell proliferation by upregulating the expression of mRNAs like *ZBTB7C*, *ATAD2*,

Fig. 5 m⁶A methylation modification in RA. m⁶A modification influences the pathological behavior of fibroblast-like synoviocytes (FLSs) and inflammation reaction

and HDAC5. Specifically, HDAC5 downregulates miR-142-5p to increase ARMC8 expression [215-217]. On the other hand, METTL3 collaborates with YTHDF2 to degrade TRIM7 mRNA, thereby reducing metastasis and chemoresistance in osteosarcoma. Notably, TRIM7 induces the ubiquitination and degradation of BRMS1, a metastasis inhibitor [218]. METTL3 also elevates the levels of *circRNF220*, which acts as a sponge for *miR*-330-5p and increases survivin expression, further regulating the progression of osteosarcoma [219]. In addition, METTL14 and WTAP are involved in the m⁶A modification network that increases osteosarcoma malignancy. METTL14 prevents MN1 mRNA degradation by enhancing its m⁶A modification and recognition by IGF2BP2, thereby promoting the progression of osteosarcoma and resistance to all-trans retinoic acid. Meanwhile, WTAP accelerates cancer progression by enhancing the m⁶A modification of lncRNA FOXD2-AS1, which interacts with FOXM1 mRNA via m⁶A sites to increase its stability [220, 221]. By contrast, METTL14 induces apoptosis in osteosarcoma by activating caspase-3, thus inhibiting the proliferation and migration of osteosarcoma cells [222]. The markedly upregulated demethylase ALKBH5 and associated readers also contribute to the enhanced malignancy of osteosarcoma. ALKBH5 collaborates with YTHDF2 to enhance lncRNA PVT1 expression through demethylation, promoting osteosarcoma development [223]. Moreover, YTHDF1 and YTHDF2, which are crucial for m⁶A modification, play distinct roles in cellular processes. YTHDF1 stabilizes YAP transcripts, while YTHDF2 degrades pre-miR-181b-1 transcripts, collectively facilitating cell proliferation [224]. YTHDC1 and YTHDF3 increase mRNA stability of PFKM, LDHA, and *PGK1* by recognizing m^6A sites, thereby promoting glycolysis and osteosarcoma progression [225, 226].

m⁶A modification regulates osteosarcoma cell behavior by activating multiple signaling pathways. For example, METTL3 upregulates LEF1, activating the Wnt/ β -catenin pathway and advancing osteosarcoma progression [227]. By contrast, FTO promotes osteosarcoma growth and metastasis by inhibiting DACT1 and activating the Wnt/β-catenin pathway [228]. Conversely, ALKBH5 hampers osteosarcoma proliferation and malignancy by blocking the STAT3 pathway and decreasing SOCS3 expression via YTHDF2 [229]. With respect to the PI3K/ AKT pathway, METTL16 and WTAP lower VPS33B and HMBOX1 expression, respectively, thus promoting osteosarcoma growth and metastasis via the PI3K/ AKT pathway [230, 231]. Meanwhile, YTHDC1 stabilizes PDPK1 mRNA via m⁶A-dependent regulation, activating the AKT/mTOR pathway and fostering osteosarcoma progression [232] (Table 6).

Multiple myeloma

m⁶A methylation and its regulatory enzymes are crucial in the pathogenesis of MM. These enzymes, abnormally elevated in the tumor environment, alter gene expression and signaling pathways, thereby promoting MM progression and resistance to therapy. METTL3 elevates the levels of oncogenes such as THRAP3, RBM25, USP4, and BZW2, which accelerate the proliferation of MM cells and inhibit apoptosis [233, 234]. Besides, METTL3 facilitates the maturation of pri-miR-182 and pri-miR-27 in collaboration with DGCR8 and promotes the proliferation of MM cells. This process includes miR-182-5p specifically targeting and inhibiting the expression of CAMK2N1 [235, 236]. Furthermore, WTAP contributes to the complexity of MM by influencing energy metabolism and extracellular communication. WTAP reduces the expression of NDUFS6 mRNA via YTHDF2, suppressing the activation of oxidative phosphorylation and tumor growth [237].

The roles of erasers ALKBH5 and FTO in tumor cell survival and proliferation are mediated through demethylation. ALKBH5 enhances lncRNA *SNHG15* expression and stability, thereby recruiting SETD2 and increasing chromatin accessibility, which promotes tumor growth [238]. ALKBH5 also stabilizes *TRAF1* mRNA, activating NF- κ B and MAPK pathways to cause the same effect [239]. In parallel, FTO diminishes the stability of *SOD2* mRNA, thereby augmenting bortezomib resistance, and activates HSF1 to promote proliferation, migration, and invasion through an m⁶A-YTHDF2-dependent mechanism [24, 240]. Additionally, FTO elevates WNT7B expression, thereby activating the Wnt pathway and fostering the progression of MM [241].

In addition, the HNRNPA2B1 and YTHDF2 readers, regulate tumor cell proliferation via m⁶A-dependent post-transcriptional mechanisms. HNRNPA2B1 stabilizes ILF3 and TLR4 mRNA, thereby activating the PI3K-AKT signaling pathway and enhancing MM cell proliferation [242, 243]. It also disrupts the balance between osteoclasts and osteoblasts by increasing the expression of miR-92a-2-5p and miR-373-3p, thereby exacerbating osteolytic lesions. Specifically, miR-92a-2-5p increases NFATc1 levels by suppressing IRF8, and miR-373-3p reduces Runx2 expression [244]. Additionally, YTHDF2 degrades EGR1 mRNA via m⁶A modification, hence disrupting the transcription of p21^{cip1/waf1} and increasing the expression of CDK2-cyclinE1, which promotes the proliferation of MM cells [245]. YTHDF2 also degrades STAT5A mRNA, while STAT5A inhibits MM cell proliferation by binding to the transcriptional sites of MAP2K2 mRNA, consequently reducing ERK phosphorylation levels [246] (Table 6).

Table 6 m⁶A methylation modification in bone tumors

Tumor types	Regulators	Effects	Mechanism	Species and cells	Ref.
Osteosarcoma	METTL3↑	promotion	ZBTB7C↑, ATAD2↑, HDAC5↑/ miR-142-5p↓/	Human osteosarcoma cell	[215-
			ARMC8↑		217]
	METTL3↑、 METTL14↑YTHDF2	inhibition	TRIM7↓/ BRMS1↑	Human osteosarcoma cell	[218]
	METTL3↑	promotion	circRNF220†/ miR-330-5p↓/ Survivin†	Human osteosarcoma cell	[219]
	METTL14↑、IGF2BP2	promotion	MN1↑	Human osteosarcoma cell	[220]
	WTAP ↑	promotion	IncRNA FOXD2-AS1↑/ FOXM1↑	Human osteosarcoma cell	[221]
	METTL14↑	inhibition	caspase-3↑	Human osteosarcoma cell	[222]
	ALKBH5↑、YTHDF2	promotion	IncRNA PVT1↑	Human osteosarcoma cell	[223]
	ALKBH5↑YTHDF1	inhibition	YAP↓	Human osteosarcoma cell	[224]
	ALKBH5↑YTHDF2	inhibition	miR-181b-1↑/ YAP↓	Human osteosarcoma cell	[224]
	YTHDC1↑	promotion	LDHA†、PFKM†	Human osteosarcoma cell	[225]
	YTHDF3↑	promotion	PGK1↑	Human osteosarcoma cell	[226]
	METTL3↑	promotion	LEF1↑/ Wnt/β-catenin↑	Human osteosarcoma cell	[227]
	FTO ↑	promotion	DACT1↓/ Wnt/β-catenin↑	Human osteosarcoma cell	[228]
	ALKBH5↑、 YTHDF2	inhibition	SOCS3↓/JAK2/ STAT3↓	Human osteosarcoma cell	[229]
	METTL16↑	promotion	VPS33B↓/PI3K/AKT↑	Human osteosarcoma cell	[230]
	WTAP↑	promotion	HMBOX1↓/PI3K/AKT↑	Human osteosarcoma cell	[231]
	YTHDC1↑	promotion	PDPK1↑/ AKT/mTOR↑	Human osteosarcoma cell	[232]
Multiple myeloma	METTL3↑	promotion	THRAP3↑、RBM25↑、USP4↑、BZW2↑	Human MM cell lines H929	[233, 234]
	METTL3↑	promotion	miR-182-5p↑/CAMK2N1↓, miR-27a-3p↑, YY1↑	Human MM cell lines H929	[235, 236]
	WTAP↑、YTHDF2	inhibition	NDUFS6↓/ oxidative phosphorylation↓	Human MM cell lines	[237]
	ALKBH5↑	promotion	IncRNA SNHG15↑/SETD2↑	Human MM cell lines	[238]
	ALKBH5↑	promotion	TRAF1↑/NF-κB↑、MAPK↑	Human MM cell lines	[239]
	FTO↑、YTHDF2	promotion	SOD2↓, HSF1↑	Human MM cell lines	[24, 240]
	FTO†	promotion	WNT7B↑/ Wnt/β-catenin↑	Human MM cell lines	[241]
	HNRNPA2B1↑	promotion	ILF3↑、TLR4↑/ PI3K-AKT↑	Human MM cell lines	[242, 243]
	hnRNPA2B1↑	promotion	miR-92a-2-5p†/ IRF8↓/ NFATc1↑, miR-373-3p†/ Runx2↓	Human MM cell lines	[244]
	YTHDF2↑	promotion	EGR1↓/ CDK2-cyclinE1↑	Human MM cell lines	[245]
	YTHDF2↑	promotion	STAT5A↓/ MAP2K2/ p -ERK↑	Human MM cell lines	[246]
Metastatic bone tun	nors				
metastatic prostate cancer		promotion	m ⁶ A-IncRNA NEAT1-1↑/ CYCLINL1/CDK19↑/ p-RNPII ser2↑/ Runx2↑	Human prostate cancer cell	[247]
	METTL3↑、IGF2BP2	promotion	IncRNA PCAT6↑/ IGF1R↑	Human prostate cancer cell	[249]
	METTL3↑、RBM3	inhibition	CTNNB1↓/Wnt/β-catenin↓	Human prostate cancer cell	[250]
Metastatic hepato- cellular carcinoma	METTL3↑、YTHDF1	promotion	ANLN†/KIF2C†/mTORC1†/RANKL†	Human hepatocellular carcinoma cell	[251]

 YTHDF2↑
 IncRNA FGF14-AS2↓/ eIF4E/eIF4G↑、p Human breast cancer cell

 eIF4E↑/ Runx2↑/ RANKL↑

Metastatic bone tumors

Metastatic breast

cancer

Bone metastasis commonly complicates advanced-stage cancers, especially breast and prostate cancers. m⁶A significantly influences the bone microenvironment by disrupting the balance between bone destruction and formation, altering tumor cell secretion of inflammatory factors and proteases and promoting bone metastases. In metastatic prostate cancer (mPCa), the m⁶A-modified lncRNA *NEAT1-1* activates the CYCLINL1/CDK19

complex when in an elevated state. This complex is then recruited to the Runx2 promoter, leading to RNPII ser2 phosphorylation. Activation of the Runx2 pathway stimulates tumor growth and metastasis [247]. KHSRP binds to m⁶A within enhancer RNA (eRNA) and m⁶A m in the 5'-UTR of *PSMD9* mRNA, thereby inhibiting *PSMD9* mRNA degradation mediated by *XRN2*. This interaction significantly enhances tumor growth and radiotherapy resistance in mPCa [248]. The m⁶A methyltransferase

[252]

activity of METTL3 is significant in this context; specifically, METTL3 enhances lncRNA PCAT6 levels through m⁶A modifications, in an IGF2BP2-dependent manner. PCAT6 stabilizes IGF1R mRNA via the PCAT6/ IGF2BP2/IGF1R complex, increasing IGF1R expression and thereby promoting bone metastasis and tumor growth in prostate cancer [249]. Additionally, METTL3 increases m⁶A methylation on CTNNB1 mRNA in a RBM3-dependent manner, reducing its stability and inhibiting the Wnt signaling pathway, which reduces the stemness and plasticity of tumor cells [250]. Similarly, aberrantly elevated METTL3 is strongly linked to bone metastasis in hepatocellular carcinoma. METTL3-mediated m⁶A modification augments ANLN expression via YTHDF1, forming a transcription complex with SP1 that enhances KIF2C transcriptional activity and activates the mTORC1 pathway. This activation elevates RANKL levels, disrupts the RANKL-OPG balance in the bone microenvironment, and facilitates liver cancer invasion into bone [251]. In addition, YTHDF2 degrades lncRNA FGF14-AS2 through m⁶A, which inhibits Runx2 translation by disrupting the eIF4E/eIF4G complex and phosphorylation of eIF4E, subsequently reducing RANKL transcription and inhibiting osteolytic bone metastasis in breast cancer [252] (Table 6).

Conclusions

In the field of epigenetics, m⁶A modification can significantly influence gene expression and cellular fate decisions by regulating RNA splicing, stability, and translational efficiency. Moreover, this modification is pivotal in determining the onset, progression, and therapeutic response of orthopedic diseases [253]. This review comprehensively explores the profound effect of m⁶A modification in the differentiation of BMSCs and its regulatory mechanisms in orthopedic diseases. By analyzing the complex interaction network among writers, erasers, and readers, primarily involving METTL3/14/16, WTAP, FTO, ALKBH5, YTHDF1/2/3, YTHDC1/2, and IGF2BP1/2/3, the article reveals how this epigenetic modification intricately regulates key gene expressions, thereby influencing cell destiny and disease progression. Primarily, m⁶A modification modulates mRNA stability and translation efficiency, either directly or indirectly, affecting the differentiation of BMSCs into osteoblasts, adipocytes, and chondrocytes, as well as regulating the formation and activity of osteoclasts. Additionally, m⁶A modification controls the biological activity of bone cells by influencing the expression and stability of molecules within crucial signaling pathways, including Wnt/β-catenin, BMP/Smad, and PI3K/ AKT. This regulatory mechanism plays a significant role in the progression of diseases like OP and OA. The dynamic alterations and regulatory mechanisms of m⁶A

modification underscore its crucial role in maintaining skeletal health and addressing pathological conditions such as OP and non-healing fractures. However, current research on the role of m⁶A modification in RNA stability, cellular activities, and orthopedic disease progression has produced conflicting results. Specifically, m⁶A modification exhibits dual effects on RNA stability, cell proliferation and differentiation, apoptosis, inflammatory responses, and tumorigenicity. These contradictions may arise from several factors, primarily the diversity and functional overlap of m⁶A reader proteins. Different reader proteins can exert distinct or opposing effects on the same modification. For example, YTHDF2 promotes mRNA degradation, YTHDF1 facilitates translation, and the IGF2BP family enhances mRNA stability and translation efficiency. Competitive binding among reader proteins and changes in their expression levels can lead to functional differences [254]. The same m6A modification may be recognized by different readers depending on context and cell state [67, 255]. Additionally, m⁶A regulation is significantly influenced by cell type and tissue specificity, as m⁶A -related enzyme and reader protein expression patterns differ among cells, leading to inconsistent functions under different physiological and pathological conditions [256, 257]. Furthermore, differences in experimental conditions and models may also contribute to these inconsistencies, as varying methodologies and environmental factors (e.g., hypoxia, inflammation) significantly affect m⁶A function [258]. To resolve these contradictions, future research should elucidate the functional characteristics of m⁶A reader proteins, especially their roles in different cell types and microenvironments. Single-cell sequencing (e.g., scRNA-seq, scMeRIP-seq) can reveal variations in m⁶A modifications and reader protein expression, while CRISPR/Cas9 gene editing offers precise functional validation [259, 260]. Integrating multi-omics analysis will help construct comprehensive regulatory models of m⁶A, further elucidating its diverse regulatory mechanisms [57].

Current studies on m⁶A methylation in diseases have expanded to include its regulatory roles in various orthopedic conditions (including bone tumors) and other pathological states, such as cancers. In orthopedic conditions, m⁶A methylation regulates osteogenesis, cartilage degeneration, inflammatory responses, and bone tumors. In cancer, m⁶A methylation influences cell proliferation, invasion, and immune evasion [261]. Future research should investigate the role of m⁶A regulatory factors in bone-related cells, including bone marrow mesenchymal stem cells, as well as the regulatory mechanisms in osteoblasts, osteoclasts, and chondrocytes, to enable precise targeted interventions. This will support the development of novel therapeutic approaches for bone formation and cartilage repair. CRISPR/Cas gene-editing technology can precisely modulate m⁶A methylation, enhancing the treatment of orthopedic diseases [262]. For instance, combining gene-editing technologies with delivery systems can target bone tissue cells precisely, improving editing efficiency and therapeutic outcomes [184]. Emerging technologies, such as single-cell sequencing and spatial transcriptomics, can reveal celltype-specific m⁶A regulatory patterns in bone tissues, especially dynamic changes in osteoblasts, osteoclasts, and chondrocytes [263]. These techniques are crucial for understanding the contributions of different cells in bone formation and repair, providing a basis for personalized therapies. Another key direction is integrating material science to explore the synergistic effects of m⁶A methylation and biomaterials in bone regeneration. For example, functionalizing bone repair scaffolds with m⁶A -regulated bioactive factors may promote bone regeneration and healing. Combining delivery systems with functionalized biomaterials allows precise delivery of bioactive factors within scaffolds, enhancing bone regeneration [264, 265]. These research directions advance orthopedic disease treatment and open new avenues for applications at the intersection of material science and epigenetics. Advancing these directions will provide a comprehensive understanding of m⁶A methylation in orthopedic diseases, laying a foundation for future therapeutic research.

In future research studies, the molecular mechanisms of m⁶A and other RNA modifications in orthopedic diseases need to be explored via both in vivo and in vitro experiments, with a focus on their effects on cellular behaviors and signaling pathways. This review emphasizes the need for ongoing research into epigenetic mechanisms in orthopedic diseases through in-depth discussions and analyses. We believe this review will enhance our comprehension of the disease's nature and foster the development of new therapeutic methods, ultimately improving clinical outcomes for patients.

Abbreviations

m ⁶ A	N6-methyladenosine
BMSC	Bone marrow mesenchymal stem cell
3' UTRs	3' Untranslated Regions
METTL3	Methyltransferase-like 3
MTC	m ⁶ A methyltransferase complex
MAC	m ⁶ A -METTL complex
MACOM	m ⁶ A -METTL-associated complex
SAM	S-adenosyl methionine
WTAP	Wilms tumor 1-associated protein
VIRMA/KIAA1429	Vir-like m ⁶ A methyltransferase associated
RBM15/RBM15B	RNA Binding Motif Protein 15/15B
ZC3H13	Zinc finger CCCH domain-containing protein 13
HAKAI	E3 ubiquitin ligase HAKAI
SMAD	Mothers against decapentaplegic homolog
Nanog	Nanog homeobox
CEBPZ	CCAAT/enhancer binding protein zeta
SP1	Specificity protein 1
ZFP217	Zinc-finger protein 217
MTD	N-terminal methyltransferase domain
VCRs	C-terminal vertebrate-conserved regions

TD1 / T4 4 0	
IRMI112	tRNA methyltransferase 11 – 2 homolog
ZCCHC4	Zinc finger CCHC-type containing 4
FTO	Fat mass and obesity-associated protein
ALKBH5	Alkylation repair homolog 5
NTD	N-terminal domain
pro mPNIA	Procursor mPNA
	VITEOL DL L L
Y I H domain	Y 1521-B nomology domain
SRSF3	Serine/arginine-rich splicing factor 3
NXF1	Nuclear export factor 1
XRN1	5'–3' ribonuclease 1
IGE2BPs	Insulin-like Growth Factor 2 mRNA-binding proteins
RRM	RNA Recognition Motif
KH domains	K-Homology domains
he DNDs	
NNRINPS	Heterogeneous nuclear ribonucleoproteins
Prrc2a	Proline rich colled-coll 2 A
LRP5/6	Low-density lipoprotein receptor-related protein 5/6
TCF/LEF	T-cell factor/lymphoid enhancer factor
Runx2	Runt-related transcription factor 2
Osterix	Sp7 transcription factor
P-Gsk-3B	Phosphorylated glycogen synthase kinase 3 beta
PTPNIG	Protein tyrosine phosphatase non-recentor type 6
	Advanced elyeption and products
AGES	Auvanced glycation end-products
SOST	Scierostin
PIWIL4	Piwi-like protein 4
BMP2	Bone morphogenetic protein 2
NOG	Noggin
PI3K	Phosphoinositide 3-kinase
AKT	AKT serine/threonine kinase
DDMT6	Protoin argining mathyltransforaso 6
	Nuclear factor kappa light chain anhancer of activated D
NF-KD	Nuclear factor kappa-light-chain-enhancer of activated B
	cells
MAPK	Mitogen-activated protein kinase
AMPK	AMP-activated protein kinase
MYD88	Myeloid differentiation primary response 88
Pth1r	Parathyroid hormone receptor-1
PKA	Protein kinase A
FRK	Extracellular signal-regulated kinase
ED	Endeplements retigulum
EK	
DIX5	Distal-less homeobox 5
ceRNA	Competing endogenous RNA
BMPR1B	Bone morphogenetic protein receptor type 1B
DGCR8	DiGeorge syndrome critical region gene 8
FGFR3	Fibroblast growth factor receptor 3
SERP1	Secreted frizzled-related protein 1
ERI N1	Eibulin 1
IAK	lanus kinaso
	Gine allow and the providence and the star for the star
SIAI	Signaling and transcription activator factor
C/EBP	CCAAI/enhancer-binding protein
TRAF	TNF receptor-associated factor
CCNA2	Cyclin A2
CDK2	Cyclin-dependent kinase 2
MCE	Mitotic clonal expansion
PNPLA2	Patatin-like phospholipase domain-containing protein 2
RUNX1T1	Runt-related transcription factor 1 translocated to 1
	Derevise me preliferator activated recenter commo
PPARG	Peroxisome promerator-activated receptor gamma
MMP	Matrix metalloproteinase
GATA3	GATA binding protein 3
Nsun	NOP2/Sun RNA methyltransferase family member
eEF1a-1	Eukaryotic elongation factor 1 alpha 1
Sox9	SRY-box transcription factor 9
Dmp1	Dentin matrix protein 1
Atp6v0d2	ATPase H ⁺ transporting V0 subunit d2
Nos2	Nitric ovide synthese ?
INOC	Inducible pitric ovide synthese
	Inducible filtric Oxide synthase
CHI3LI	Chitinase 3-like I
RANK	Receptor activator of nuclear factor ĸB
RANKL	Receptor activator of nuclear factor KB ligand
HuR	Hu antigen R
GPX4	Glutathione peroxidase 4
c-EOS	Cellular FOS proto-oncogene
NFATc1	Nuclear factor of activated T-cells, cytoplasmic 1
	Directoria kinaso DNA liko ondonlasmia retievlum kinaso
I L'NN	r iotein kinase niva-like enuopiasmic reticulum kinase

		100000	
IRETO	Inositol-requiring enzyme Taipna	VPS33B	vacuolar protein sorting 33B
AIF6	Activating transcription factor 6	HMBOXT	Homeobox containing I
OCS3	O-GIcNAc-specific hydrolase 3	PDPK1	3-phosphoinositide dependent protein kinase 1
Oct4	Octamer-binding transcription factor 4	mTOR	Mammalian target of rapamycin
TWIST1	Twist family bHLH transcription factor 1	MM	Multiple myeloma
ECM	Extracellular matrix	THRAP3	Thyroid hormone receptor associated protein 3
OA	Osteoarthritis	RBM25	RNA binding motif protein 25
II -1B	Interleukin-1B	USP4	Ubiquitin-specific protease 4
DNMT	DNA methyltransferase	B7W2	Basic leucine zipper and W2 domain containing 2
HRSP	Heat-responsive protein	CAMK2N1	Calcium/calmodulin-dependent protein kinase 2
MRP	Multidrug resistance-associated protein	CAMINZINI	inhibitor 1
Palo	R cell lymphoma 2	CETDO	SET domain containing 2
DCIZ	D-cell lymphoma 2 Destais lisses AMD satisated sately tis subweit slobe 2	SEIDZ	Ser domain containing 2
PRKAA2	Protein kinase AMP-activated catalytic subunit alpha 2	SOD2	Superoxide dismutase 2
AQP1	Aquaporin 1	HSF1	Heat shock factor 1
ANKH	ANKH inorganic pyrophosphate transport regulator	WNT7B	Wingless-type MMTV integration site family member 7B
HS3ST3B1	Heparan sulfate-glucosamine 3-sulfotransferase 3B1	ILF3	Interleukin enhancer-binding factor 3
SIRT1	Sirtuin 1	IRF8	Interferon regulatory factor 8
TIMPs	Tissue inhibitors of metalloproteinases	EGR1	Early growth response 1
SOCS2	Suppressor of cytokine signaling 2	mPCa	Metastatic prostate cancer
NLRP3	NOD-like receptor family pyrin domain containing 3	RNPII	RNA polymerase II
FR7B	Frizzled-related protein	KHSRP	KH-type splicing regulatory protein
TI R4	Toll-like receptor 4	eRNA	Enhancer RNA
TNERSEQ	Tumor pecrosis factor receptor superfamily member 9	PSMDQ	Protessome 26 S subunit non-ATPase 9
	Ostopporosis	VDND	E' 2' overibenuclease 2
	DNA binding motif protoin 4		Directate cancer accepted transpirit 6
RDIVI4	ATD 11 L	PCAID	Prostate cancer-associated transcript o
ACLY	Al P-citrate lyase	IGEIK	Insulin-like growth factor T receptor
SLC25A1	Solute carrier family 25 member 1	CINNB1	Catenin beta 1
Hspa1a	Heat shock protein family A member 1 A	ANLN	Anillin,, actin-binding protein
FSH	Follicle-stimulating hormone	KIF2C	Kinesin family member 2 C
CTSK	Cathepsin K	OPG	Osteoprotegerin
TCF1	T-cell factor 1		
FNDC5	Fibronectin type III domain containing 5	Acknowledger	nents
SAH	S-adenosylhomocysteine	We thank Wu la	b members for helpful discussion and input. Figures were
IVDD	Intervertebral disc degeneration	generated using	g MedPeer. The authors declare that they have not use
NPCs	Nucleus pulposus cells	Al-generated w	ork in this manuscript
SIAH1	Seven in absentia homolog 1	All generated W	on an and a seript.
YIAD	X-linked inhibitor of apontosis protein	Author contrib	nutions
	Dishovelled Avia domain containing 1	VC conceived th	a project: all authors wrote the manuscript: DW and EC
	EAK family interaction and an anti-	ic conceived ti	re project, all authors whole the manuscript, DW, and PG
FIP200	FAK family-interacting protein of 200 kDa	revised the mar	iuscript.
DNM13B	DNA methyltransferase 3 beta		
SOX5	SRY-box transcription factor 5	Funding	
PUMILIO	Pumilio RNA-binding family member	This study was s	supported by Scientific Development Program of Jilin Province
PUM1/2	Pumilio RNA-binding family member 1/2	(20230402009G	H;20240305038YY); Industrial Technology Research and
E2F3	E2F transcription factor 3	Development P	Project of Jilin Provincial Development and Reform Commission
TRIM28	Tripartite motif-containing 28	(2023C040-3).	
RPL	Ribosomal protein, large subunit		
RA	Rheumatoid arthritis	Data availabili	ty
FL Ss	Fibroblast-like synoviocytes	Not applicable.	•
TGM2	Transquitaminase 2		
ΤΝΕΔΙΡ3	Tumor pecrosis factor alpha-induced protein 3		
	LIM and SH3 domain protoin 1	Declaration	S
LASE I	Direta angegene turgsing protein linges Cre		
SRC	Proto-oncogene tyrosine-protein kinase sic	Ethics approva	al and consent to participate
AMIGO2	Adhesion molecule with 1g like domain 2	Not applicable	
PGC-1a	Peroxisome proliferator-activated receptor gamma	not applicable.	
	coactivator 1-alpha	C	
CH25H	Cholesterol 25-hydroxylase	Consent for pu	iblication
MYO1C	Myosin IC	Not applicable.	
JARID2	Jumonji and AT-rich interaction domain containing 2		
ZBTB7C	Zinc finger and BTB domain containing 7 C	Competing int	erests
	ATPase family AAA domain-containing ?	The authors hav	e declared that no competing interest exists.
	Histopo descatulase 5		
ADMCO	Armadilla report containing 9	Pacaiwade 17 Au	ugust 2024 / Accontade 24 April 2025
ARIVICO	Armadilio repeat containing 8	Received. 17 Au	ugust 20247 Accepted. 24 April 2025
I KIIVI/	inpartite motil containing /	Published onl	ine: 06 May 2025
BRMS1	Breast cancer metastasis suppressor 1		
MN1	Meningioma 1		
FOXM1	Forkhead box M1		
PVT1	Plasmacytoma Variant Translocation 1	References	
YAP	Yes-associated protein	1. Salhotra A,	Shah HN, Levi B, Longaker MT. Mechanisms of bone development
PFKM	Phosphofructokinase, muscle	and repair.	Nat Rev Mol Cell Biol. 2020;21:696–711.
LDHA	Lactate dehydrogenase A	2. Arthur A 7	annetting A. Gronthos S. The therapeutic applications of multipo-
PGK1	Phosphoglycerate kinase 1	tential mes	enchymal/stromal stem cells in skeletal tissue renair. I Cell Physiol
DACT1	Dishevelled associated antagonist of beta-catenin 1	2000-210-22	27_45
		///////////////////////////////////////	

- Arthur A, Gronthos S. Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue. Int J Mol Sci, 21 (2020).
- Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank AM, Bocian C, Woelk L, Fan H, Logan DW, Schurmann A, Saraiva LR, Schulz TJ. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem Cell-Based hematopoietic and bone regeneration. Cell Stem Cell. 2017;20:771–.
- Park D, Spencer JA, Koh BI, Kobayashi T, Fujisaki J, Clemens TL, Lin CP, Kronenberg HM, Scadden DT. Endogenous bone marrow MSCs are dynamic, Fate-Restricted participants in bone maintenance and regeneration. Cell Stem Cell. 2012;10:259–72.
- Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, MacArthur BD, Lira SA, Scadden DT, Ma'ayan A, Enikolopov GN, Frenette PS. Mesenchymal and Haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466:829–U859.
- Vallim FC, Guimarães JAM, Dias RB, Sartore RC, Cavalcanti ADS, Leal AC, Duarte MEL, Bonfim DC. Atrophic nonunion stromal cells form bone and recreate the bone marrow environment in vivo. OTA Int. 2018;1:e008.
- Tawonsawatruk T, Kelly M, Simpson H. Evaluation of native mesenchymal stem cells from bone marrow and local tissue in an atrophic nonunion model. Tissue Eng Part C Methods. 2014;20:524–32.
- Chiu LH, Lai WFT, Chang SF, Wong CC, Fan CY, Fang CL, Tsai YH. The effect of type II collagen on MSC osteogenic differentiation and bone defect repair. Biomaterials. 2014;35:2680–91.
- Nehlin JO, Jafari A, Tencerova M, Kassem M. Aging and lineage allocation changes of bone marrow skeletal (stromal) stem cells. Bone. 2019;123:265–73.
- Roundtree IA, Luo G-Z, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P, He E, Shen B, He C. YTHDC1 mediates nuclear export of N-6 - methyladenosine methylated mRNAs. Elife; 2017. p. 6.
- 12. Roundtree IA, He C. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Trends Genet. 2016;32:320–1.
- Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–20.
- 14. Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible M⁶A RNA methylation. Nat Rev Genet. 2014;15:293–306.
- Meyer KD, Jaffrey SR. Rethinking m(6)A readers, writers, and erasers. Annu Rev Cell Dev Biol. 2017;33:319–42.
- Sun W, Song Y, Xia K, Yu L, Huang X, Zhao Z, Liu J. Transcriptome-wide m(6) A methylome during osteogenic differentiation of human adipose-derived stem cells. Stem Cell Res Ther. 2021;12:489.
- Han J, Kong H, Wang X, Zhang X-a. Novel insights into the interaction between N6-methyladenosine methylation and noncoding RNAs in musculoskeletal disorders. Cell Prolif, 55 (2022).
- Chen XJ, Hua WF, Huang X, Chen YM, Zhang JG, Li GW. Regulatory role of RNA N-6-Methyladenosine modification in bone biology and osteoporosis. Front Endocrinol, 10 (2020).
- 19. Wu YS, Zhou CC, Yuan Q. Role of DNA and RNA N-6-Adenine methylation in regulating stem cell fate. Curr Stem Cell Res Therapy. 2018;13:31–8.
- 20. Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to Forge new ones. Cell. 2014;157:77–94.
- 21. Decoding noncoding RNAs. Nat Methods. 2022;19:1147-8.
- Chen X, Xie W, Zhang M, Shi Y, Xu S, Cheng H, Wu L, Pathak JL, Zheng Z. The emerging role of Non-Coding RNAs in osteogenic differentiation of human bone marrow mesenchymal stem cells. Front Cell Dev Biol. 2022;10:903278.
- 23. Shen GS, Zhou HB, Zhang H, Chen B, Liu ZP, Yuan Y, Zhou XZ, Xu YJ. The GDF11-FTO-PPAR gamma axis controls the shift of osteoporotic MSC fate to adipocyte and inhibits bone formation during osteoporosis. Biochim Et Biophys Acta-Molecular Basis Disease. 2018;1864:3644–54.
- Xu A, Zhang J, Zuo L, Yan H, Chen L, Zhao F, Fan F, Xu J, Zhang B, Zhang Y, Yin X, Cheng Q, Gao S, Deng J, Mei H, Huang Z, Sun C, Hu Y. FTO promotes multiple myeloma progression by posttranscriptional activation of HSF1 in an m(6)A-YTHDF2-dependent manner. Mol Ther. 2022;30:1104–18.
- Harper JE, Miceli SM, Roberts RJ, Manley JL. Sequence specificity of the human mRNA N6-adenosine Methylase in vitro. Nucleic Acids Res. 1990;18:5735–41.
- Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell. 2012;149:1635–46.
- 27. Sendinc E, Shi Y. RNA m6A methylation across the transcriptome. Mol Cell. 2023;83:428–41.

- 28. Su S, Li S, Deng T, Gao M, Yin Y, Wu B, Peng C, Liu J, Ma J, Zhang K. Cryo-EM structures of human m(6)A writer complexes. Cell Res. 2022;32:982–94.
- Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, Dai Q, Chen W, He C. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10:93–5.
- Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, Gong Z, Wang Q, Huang J, Tang C, Zou T, Yin P. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. 2016;534:575–8.
- Schöller E, Weichmann F, Treiber T, Ringle S, Treiber N, Flatley A, Feederle R, Bruckmann A, Meister G. Interactions, localization, and phosphorylation of the m(6)A generating METTL3-METTL14-WTAP complex. RNA. 2018;24:499–512.
- Lence T, Paolantoni C, Worpenberg L, Roignant JY. Mechanistic insights into m(6)A RNA enzymes. Biochim Biophys Acta Gene Regul Mech. 2019;1862:222–9.
- Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, Zhao X, Li A, Yang Y, Dahal U, Lou XM, Liu X, Huang J, Yuan WP, Zhu XF, Cheng T, Zhao YL, Wang X, Rendtlew Danielsen JM, Liu F, Yang YG. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24:177–89.
- 34. Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z, Cheng T, Gao M, Shu X, Ma H, Wang F, Wang X, Shen B, Wang Y, Feng X, He C, Liu J. VIRMA mediates Preferential m(6)A mRNA methylation in 3'UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 2018;4:10.
- Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M, Jaffrey SR. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 2016;537:369–73.
- Knuckles P, Lence T, Haussmann IU, Jacob D, Kreim N, Carl SH, Masiello I, Hares T, Villaseñor R, Hess D, Andrade-Navarro MA, Biggiogera M, Helm M, Soller M, Bühler M, Roignant JY. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m(6)A machinery component Wtap/Fl(2)d. Genes Dev. 2018;32:415–29.
- Wen J, Lv R, Ma H, Shen H, He C, Wang J, Jiao F, Liu H, Yang P, Tan L, Lan F, Shi YG, He C, Shi Y, Diao J. Zc3h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell Self-Renewal. Mol Cell. 2018;69:1028–e10381026.
- Bawankar P, Lence T, Paolantoni C, Haussmann IU, Kazlauskiene M, Jacob D, Heidelberger JB, Richter FM, Nallasivan MP, Morin V, Kreim N, Beli P, Helm M, Jinek M, Soller M, Roignant JY. Hakai is required for stabilization of core components of the m(6)A mRNA methylation machinery. Nat Commun. 2021;12:3778.
- Ma S, Chen C, Ji X, Liu J, Zhou Q, Wang G, Yuan W, Kan Q, Sun Z. The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol. 2019;12:121.
- Huang H, Weng H, Chen J. m(6)A modification in coding and Noncoding RNAs: roles and therapeutic implications in Cancer. Cancer Cell. 2020;37:270–88.
- Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP, Conrad NK. The U6 snRNA m(6)A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention, Cell. 2017;169:824–835.e814.
- Warda AS, Kretschmer J, Hackert P, Lenz C, Urlaub H, Höbartner C, Sloan KE, Bohnsack MT. Human METTL16 is a N(6)-methyladenosine (m(6)A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 2017;18:2004–14.
- Turkalj EM, Vissers C. The emerging importance of METTL5-mediated ribosomal RNA methylation. Exp Mol Med. 2022;54:1617–25.
- Ma H, Wang X, Cai J, Dai Q, Natchiar SK, Lv R, Chen K, Lu Z, Chen H, Shi YG, Lan F, Fan J, Klaholz BP, Pan T, Shi Y, He C. N(6-)Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat Chem Biol. 2019;15:88–94.
- Ren W, Lu J, Huang M, Gao L, Li D, Wang GG, Song J. Structure and regulation of ZCCHC4 in m(6)A-methylation of 28S rRNA. Nat Commun. 2019;10:5042.
- Wang Z, He J, Bach DH, Huang YH, Li Z, Liu H, Lin P, Yang J. Induction of m(6) A methylation in adipocyte Exosomal LncRNAs mediates myeloma drug resistance. J Exp Clin Cancer Res. 2022;41:4.
- Bartosovic M, Molares HC, Gregorova P, Hrossova D, Kudla G, Vanacova S. N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3'-end processing. Nucleic Acids Res. 2017;45:11356–70.
- Wei J, Liu F, Lu Z, Fei Q, Ai Y, He PC, Shi H, Cui X, Su R, Klungland A, Jia G, Chen J, He C. Differential m(6)A, m(6)A(m), and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell. 2018;71:973–e985975.

- Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, Linder B, Pickering BF, Vasseur JJ, Chen Q, Gross SS, Elemento O, Debart F, Kiledjian M, Jaffrey SR. Reversible methylation of m(6)A(m) in the 5' cap controls mRNA stability. Nature. 2017;541:371–5.
- Gulati P, Avezov E, Ma M, Antrobus R, Lehner P, O'Rahilly S, Yeo GS. Fat mass and obesity-related (FTO) shuttles between the nucleus and cytoplasm. Biosci Rep, 34 (2014).
- Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, Lu Z, Bosmans RP, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia G, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49:18–29.
- Ueda Y, Ooshio I, Fusamae Y, Kitae K, Kawaguchi M, Jingushi K, Hase H, Harada K, Hirata K, Tsujikawa K. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci Rep. 2017;7:42271.
- Li H, Zhang Y, Guo Y, Liu R, Yu Q, Gong L, Liu Z, Xie W, Wang C. ALKBH1 promotes lung cancer by regulating m6A RNA demethylation. Biochem Pharmacol. 2021;189:114284.
- 54. Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019;20:608–24.
- 55. Zhao Y, Shi Y, Shen H, Xie W. m(6)A-binding proteins: the emerging crucial performers in epigenetics. J Hematol Oncol. 2020;13:35.
- Liao J, Wei Y, Liang J, Wen J, Chen X, Zhang B, Chu L. Insight into the structure, physiological function, and role in cancer of m6A readers-YTH domaincontaining proteins. Cell Death Discov. 2022;8:137.
- Liu T, Wei Q, Jin J, Luo Q, Liu Y, Yang Y, Cheng C, Li L, Pi J, Si Y, Xiao H, Li L, Rao S, Wang F, Yu J, Yu J, Zou D, Yi P. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 2020;48:3816–31.
- Chen Z, Zhong X, Xia M, Zhong J. The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases. Mol Ther Nucleic Acids. 2021;26:1270–9.
- Li J, Chen K, Dong X, Xu Y, Sun Q, Wang H, Chen Z, Liu C, Liu R, Yang Z, Mei X, Zhang R, Chang L, Tian Z, Chen J, Liang K, He C, Luo M. YTHDF1 promotes mRNA degradation via YTHDF1-AGO2 interaction and phase separation. Cell Prolif. 2022;55:e13157.
- Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, Ma J, Wu L. YTHDF2 destabilizes m(6) A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun. 2016;7:12626.
- Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C, He C. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 2017;27:315–28.
- Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, Wang X, Ma HL, Huang CM, Yang Y, Huang N, Jiang GB, Wang HL, Zhou Q, Wang XJ, Zhao YL, Yang YG. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 2016;61:507–19.
- Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P, He E, Shen B, He C. YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs, Elife, 6 (2017).
- 64. Wojtas MN, Pandey RR, Mendel M, Homolka D, Sachidanandam R, Pillai RS. Regulation of m(6)A transcripts by the 3'→5' RNA helicase YTHDC2 is essential for a successful meiotic program in the mammalian germline. Mol Cell. 2017;68:374–e387312.
- Mao Y, Dong L, Liu XM, Guo J, Ma H, Shen B, Qian SB. m(6)A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nat Commun. 2019;10:5332.
- Degrauwe N, Suvà ML, Janiszewska M, Riggi N, Stamenkovic I. IMPs: an RNAbinding protein family that provides a link between stem cell maintenance in normal development and cancer. Genes Dev. 2016;30:2459–74.
- Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, Hu YC, Hüttelmaier S, Skibbe JR, Su R, Deng X, Dong L, Sun M, Li C, Nachtergaele S, Wang Y, Hu C, Ferchen K, Greis KD, Jiang X, Wei M, Qu L, Guan JL, He C, Yang J, Chen J. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20:285–95.
- Alarcón C.R., Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie S F. HNRNPA2B1 is a mediator of m(6)A-Dependent nuclear RNA processing events. Cell. 2015;162:1299–308.
- Kwon J, Jo YJ, Namgoong S, Kim NH. Functional roles of hnRNPA2/B1 regulated by METTL3 in mammalian embryonic development. Sci Rep. 2019;9:8640.

- Liu N, Zhou KJ, Parisien M, Dai Q, Diatchenko L, Pan T. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 2017;45:6051–63.
- Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 2015;518:560–4.
- Wu R, Li A, Sun B, Sun JG, Zhang J, Zhang T, Chen Y, Xiao Y, Gao Y, Zhang Q, Ma J, Yang X, Liao Y, Lai WY, Qi X, Wang S, Shu Y, Wang HL, Wang F, Yang YG, Yuan Z. A novel m(6)A reader Prrc2a controls oligodendroglial specification and myelination. Cell Res. 2019;29:23–41.
- Farrell E, Both SK, Odörfer KI, Koevoet W, Kops N, O'Brien FJ, Baatenburg de Jong RJ, Verhaar JA, Cuijpers V, Jansen J, Erben RG, van Osch GJ. In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells. BMC Musculoskelet Disord. 2011;12:31.
- Hoshiba T, Kawazoe N, Chen G. The balance of osteogenic and adipogenic differentiation in human mesenchymal stem cells by matrices that mimic Stepwise tissue development. Biomaterials. 2012;33:2025–31.
- 75. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289:1504-8.
- Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, Cao J, Xie N, Velletri T, Zhang X, Xu C, Zhang L, Yang H, Hou J, Wang Y, Shi Y. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ. 2016;23:1128–39.
- Ghosh-Choudhury N, Abboud SL, Nishimura R, Celeste A, Mahimainathan L, Choudhury GG. Requirement of BMP-2-induced phosphatidylinositol 3-kinase and Akt serine/threonine kinase in osteoblast differentiation and Smad-dependent BMP-2 gene transcription. J Biol Chem. 2002;277:33361–8.
- Marini F, Giusti F, Palmini G, Brandi ML. Role of Wnt signaling and sclerostin in bone and as therapeutic targets in skeletal disorders. Osteoporos Int. 2023;34:213–38.
- Wu T, Tang H, Yang J, Yao Z, Bai L, Xie Y, Li Q, Xiao J. METTL3-m(6) A Methylase regulates the osteogenic potential of bone marrow mesenchymal stem cells in osteoporotic rats via the Wnt signalling pathway. Cell Prolif. 2022;55:e13234.
- Cheng C, Zhang H, Zheng J, Jin Y, Wang D, Dai Z. METTL14 benefits the mesenchymal stem cells in patients with steroid-associated osteonecrosis of the femoral head by regulating the m6A level of PTPN6. Aging. 2021;13:25903–19.
- Zhou J, Zhu Y, Ai D, Zhou M, Li H, Li G, Zheng L, Song J. Advanced glycation end products impair bone marrow mesenchymal stem cells osteogenesis in periodontitis with diabetes via FTO-mediated N(6)-methyladenosine modification of sclerostin. J Transl Med. 2023;21:781.
- Gao X, Wang J, Wang Y, Li W, Pan Z. The m(6)A Reader YTHDF1 Accelerates the Osteogenesis of Bone Marrow Mesenchymal Stem Cells Partly via Activation of the Autophagy Signaling Pathway, Stem Cells Int, 2023 (2023) 5563568.
- Salazar VS, Gamer LW, Rosen V. BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol. 2016;12:203–21.
- Zhang Y, Gu X, Li D, Cai L, Xu Q. METTL3 regulates osteoblast differentiation and inflammatory response via Smad signaling and MAPK signaling. Int J Mol Sci, 21 (2019).
- Liu J, Chen M, Ma L, Dang X, Du G. piRNA-36741 regulates BMP2-mediated osteoblast differentiation via METTL3 controlled m6A modification. Aging. 2021;13:23361–75.
- Luo H, Liu W, Zhou Y, Zhang Y, Wu J, Wang R, Shao L. Stage-specific requirement for METTL3-dependent m(6)A modification during dental pulp stem cell differentiation. J Transl Med. 2022;20:605.
- Huang C, Wang Y. Downregulation of METTL14 improves postmenopausal osteoporosis via IGF2BP1 dependent posttranscriptional Silencing of SMAD1. Cell Death Dis, 13 (2022).
- Wang T, Zhang X, Bikle DD. Osteogenic differentiation of periosteal cells during fracture healing. J Cell Physiol. 2017;232:913–21.
- Tian C, Huang Y, Li Q, Feng Z, Xu Q. Mettl3 regulates osteogenic differentiation and alternative splicing of Vegfa in bone marrow mesenchymal stem cells. Int J Mol Sci, 20 (2019).
- Li Z, Wang P, Li J, Xie Z, Cen S, Li M, Liu W, Ye G, Zheng G, Ma M, Wang S, Yu W, Wu Y, Shen H. The N(6)-methyladenosine demethylase ALKBH5 negatively regulates the osteogenic differentiation of mesenchymal stem cells through PRMT6. Cell Death Dis. 2021;12:578.
- Yu J, Shen L, Liu Y, Ming H, Zhu X, Chu M, Lin J. The m6A methyltransferase METTL3 cooperates with demethylase ALKBH5 to regulate osteogenic differentiation through NF-kappa B signaling. Mol Cell Biochem. 2020;463:203–10.

- Son HE, Min HY, Kim EJ, Jang WG. Fat mass and Obesity-Associated (FTO) stimulates osteogenic differentiation of C3H10T1/2 cells by inducing mild Endoplasmic reticulum stress via a positive feedback loop with p-AMPK. Mol Cells. 2020;43:58–65.
- 94. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of CeRNA crosstalk and competition. Nature. 2014;505:344–52.
- Peng J, Zhan YL, Zong Y. METTL3-mediated LINC00657 promotes osteogenic differentiation of mesenchymal stem cells via miR-144-3p/BMPR1B axis, cell and tissue research. 2022;388:301–12.
- Chen X, Qin Y, Wang X, Lei H, Zhang X, Luo H, Guo C, Sun W, Fang S, Qin W, Jin Z. METTL3-Mediated m6A modification regulates the osteogenic differentiation through LncRNA CUTALP in periodontal mesenchymal stem cells of periodontitis patients. Stem Cells Int. 2024;2024;3361794.
- Li L, Wang B, Zhou X, Ding H, Sun C, Wang Y, Zhang F, Zhao J. METTL3mediated long non-coding RNA MIR99AHG methylation targets miR-4660 to promote bone marrow mesenchymal stem cell osteogenic differentiation. Cell Cycle. 2023;22:476–93.
- Yang Y, Zeng J, Jiang C, Chen J, Song C, Chen M, Wu B. METTL3-Mediated IncSNHG7 m(6)A modification in the osteogenic/odontogenic differentiation of human dental stem cells. J Clin Med, 12 (2023).
- Song Y, Pan Y, Wu M, Sun W, Luo L, Zhao Z, Liu J. METTL3-Mediated LncRNA m(6)A modification in the osteogenic differentiation of human Adipose-Derived stem cells induced by NEL-Like 1 protein. Stem Cell Rev Rep. 2021;17:2276–90.
- Zhang X, Liu J, Gao J, Sun W, Chen X, Wang X, Qin W, Jin Z. N6-methyladenosine promotes osteogenic differentiation of PDLSCs from periodontitis patients. Oral Diseases; 2023.
- Mi BB, Xiong Y, Yan CC, Chen L, Xue H, Panayi AC, Hu LC, Hu YQ, Zhou W, Cao FQ, Liu GH. Methyltransferase-like 3-mediated N6-methyladenosine modification of miR-7212-5p drives osteoblast differentiation and fracture healing. J Cell Mol Med. 2020;24:6385–96.
- 102. Han X, Li G, Yang H, Zhang C, Cao Y, Wang N, Ge L, Fan Z. METTL3 Promotes Osteo/Odontogenic Differentiation of Stem Cells by Inhibiting miR-196b-5p Maturation, Stem Cells Int. 2023;2023:8992284.
- Shen WC, Lai YC, Li LH, Liao K, Lai HC, Kao SY, Wang J, Chuong CM, Hung SC. Methylation and PTEN activation in dental pulp mesenchymal stem cells promotes osteogenesis and reduces oncogenesis. Nat Commun, 10 (2019).
- 104. Sun ZY, Wang H, Wang YX, Yuan GD, Yu X, Jiang H, Wu Q, Yang BK, Hu ZB, Shi F, Cao XS, Zhang S, Guo T, Zhao JN. MiR-103-3p targets the m(6)A methyltransferase METTL14 to inhibit osteoblastic bone formation. Aging Cell, 20 (2021).
- 105. Liu J, You Y, Sun Z, Zhang L, Li X, Dai Z, Ma J, Chen Y, Jiao G. WTAP-Mediated m6A RNA methylation regulates the differentiation of bone marrow mesenchymal stem cells via the miR-29b-3p/HDAC4 Axis. Stem Cells Transl Med. 2023;12:307–21.
- 106. You Y, Liu J, Zhang L, Li X, Sun Z, Dai Z, Ma J, Jiao G, Chen Y. WTAP-mediated m6A modification modulates bone marrow mesenchymal stem cells differentiation potential and osteoporosis. Cell Death Dis. 2023;14:33–33.
- 107. Yang H, Wang W, Liu H, Zhang C, Cao Y, Long L, Han X, Wang Y, Yan F, Li G, Zhu M, Jin L, Fan Z. miR615-3p inhibited FBLN1 and osteogenic differentiation of umbilical cord mesenchymal stem cells by associated with YTHDF2 in a m(6) A-miRNA interaction manner. Cell Prolif, (2024) e13607.
- Lai A, Sun J, Dai Z, Guo L, Tao D, Li H, Chen B, Zhou R. Unraveling IGFBP3mediated m6A modification in fracture healing. Pathol Res Pract. 2024;255:155220.
- Muruganandan S, Sinal CJ. The impact of bone marrow adipocytes on osteoblast and osteoclast differentiation. IUBMB Life. 2014;66:147–55.
- 110. Chen G, Wang Q, Li Z, Yang Q, Liu Y, Du Z, Zhang G, Song Y. Circular RNA CDR1as promotes adipogenic and suppresses osteogenic differentiation of BMSCs in steroid-induced osteonecrosis of the femoral head. Bone. 2020;133:115258.
- Wang X, Zhu L, Chen J, Wang Y. mRNA M⁶A methylation downregulates adipogenesis in Porcine adipocytes. Biochem Biophys Res Commun. 2015;459:201–7.
- Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, Bruning JC, Ruther U. Inactivation of the Fto gene protects from obesity. Nature. 2009;458:894–U810.

- 113. Yao YX, Bi Z, Wu RF, Zhao YL, Liu YH, Liu Q, Wang YZ, Wang XX. METTL3 inhibits BMSC adipogenic differentiation by targeting the JAK1/STAT5/C/EBP beta pathway via an m(6)A-YTHDF2-dependent manner. Faseb J. 2019;33:7529–44.
- 114. Pan ZP, Wang B, Hou DY, You RL, Wang XT, Xie WH, Huang HF. METTL3 mediates bone marrow mesenchymal stem cell adipogenesis to promote chemoresistance in acute myeloid leukaemia. FEBS Open Bio. 2021;11:1659–72.
- 115. Wu RF, Guo GQ, Bi Z, Liu YH, Zhao YL, Chen NN, Wang FQ, Wang YZ, Wang XX. m(6)A methylation modulates adipogenesis through JAK2-STAT3-C/EBP beta signaling. Biochim Et Biophys Acta-Gene Regul Mech. 2019;1862:796–806.
- 116. Cen SZ, Li JT, Cai ZP, Pan YQ, Sun ZH, Li ZF, Ye GW, Zheng G, Li M, Liu WJ, Yu WH, Wang S, Xie ZY, Wang P, Shen HY. TRAF4 acts as a fate checkpoint to regulate the adipogenic differentiation of MSCs by activating PKM2, Ebiomedicine, 54 (2020).
- 117. Wu RF, Yao YX, Jiang Q, Cai M, Liu QZ, Wang YZ, Wang XX. Epigallocatechin gallate targets FTO and inhibits adipogenesis in an mRNA m(6)A-YTHDF2dependent manner. Int J Obes. 2018;42:1378–88.
- 118. Wu RF, Liu YH, Yao YX, Zhao YL, Bi Z, Jiang Q, Liu Q, Cai M, Wang FQ, Wang YZ, Wang XX. FTO regulates adipogenesis by controlling cell cycle progression via m(6)A-YTHDF2 dependent mechanism, biochimica et biophysica Acta-Molecular and cell biology of lipids, 1863 (2018) 1323–30.
- 119. Liu Q, Zhao YL, Wu RF, Jiang Q, Cai M, Bi Z, Liu YH, Yao YX, Feng J, Wang YZ, Wang XX. ZFP217 regulates adipogenesis by controlling mitotic clonal expansion in a METTL3-m(6)A dependent manner. RNA Biol. 2019;16:1785–93.
- 120. Song TX, Yang Y, Wei HK, Xie XW, Lu JX, Zeng QH, Peng J, Zhou YF, Jiang SW, Peng J. Zfp217 mediates m(6)A mRNA methylation to orchestrate transcriptional and post-transcriptional regulation to promote adipogenic differentiation. Nucleic Acids Res. 2019;47:6130–44.
- 121. Kobayashi M, Ohsugi M, Sasako T, Awazawa M, Umehara T, Iwane A, Kobayashi N, Okazaki Y, Kubota N, Suzuki R, Waki H, Horiuchi K, Hamakubo T, Kodama T, Aoe S, Tobe K, Kadowaki T. K. Ueki, the RNA methyltransferase complex of WTAP, METTL3, and METTL14 regulates mitotic clonal expansion in adipogenesis. Mol Cell Biol, 38 (2018).
- 122. Wang XX, Sun BF, Jiang Q, Wu R, Cai M, Yao YX, Liu Q, Shi HL, Feng J, Wang YZ. mRNA m(6)A plays opposite role in regulating UCP2 and PNPLA2 protein expression in adipocytes. Int J Obes. 2018;42:1912–24.
- 123. Jiang Q, Sun BF, Liu Q, Cai M, Wu RF, Wang FQ, Yao YX, Wang YZ, Wang XX. MTCH2 promotes adipogenesis in intramuscular preadipocytes via an m(6) A-YTHDF1-dependent mechanism. Faseb J. 2019;33:2971–81.
- 124. Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, Hao YJ, Ping XL, Chen YS, Wang WJ, Jin KX, Wang X, Huang CM, Fu Y, Ge XM, Song SH, Jeong HS, Yanagisawa H, Niu YM, Jia GF, Wu W, Tong WM, Okamoto A, He C, Danielsen JMR, Wang XJ, Yang YG. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 2014;24:1403–19.
- 125. Merkestein M, Laber S, McMurray F, Andrew D, Sachse G, Sanderson J, Li MD, Usher S, Sellayah D, Ashcroft FM, Cox RD. FTO influences adipogenesis by regulating mitotic clonal expansion. Nat Commun, 6 (2015).
- 126. Marcucio RS, Miclau T 3rd, Bahney CS. A shifting paradigm: transformation of cartilage to bone during bone repair. J Dent Res. 2023;102:13–20.
- 127. Hu B, Zou X, Yu Y, Jiang Y, Xu H. METTL3 promotes SMSCs chondrogenic differentiation by targeting the MMP3, MMP13, and GATA3. Regen Ther. 2023;22:148–59.
- 128. Yang L, Ren ZX, Yan SY, Zhao L, Liu J, Zhao LJ, Li Z, Ye SY, Liu AJ, Li XC, Guo JS, Zhao W, Kuang WH, Liu HL, Chen DF. Nsun4 and Mettl3 mediated translational reprogramming of Sox9 promotes BMSC chondrogenic differentiation. Commun Biology, 5 (2022).
- 129. He Y, Wang W, Luo P, Wang Y, He Z, Dong W, Jia M, Yu X, Yang B, Wang J. Mettl3 regulates hypertrophic differentiation of chondrocytes through modulating Dmp1 mRNA via Ythdf1-mediated m6A modification, Bone. 2022;164:116522.
- Song M, Yao H, Sun Z, Chen D, Xu X, Long G, Wu L, Hu W. METTL3/YTHDC1medicated m6A modification of circRNA3634 regulates the proliferation and differentiation of antler chondrocytes by miR-124486-5-MAPK1 axis. Cell Mol Biol Lett. 2023;28:101.
- Yang XM, Lin YX, Chen TQ, Hu WJ, Li PF, Qiu XM, Yang B, Liang AJ, Gao WJ. YTHDF1 enhances chondrogenic differentiation by activating the Wnt/beta-Catenin signaling pathway. Stem Cells Dev. 2023;32:115–30.
- 132. Shen H, Zhuang Y, Zhang C, Zhang C, Yuan Y, Yu H, Si J, Shen G. Osteoclast-Driven osteogenesis, bone remodeling and biomaterial resorption: A new profile of BMP2-CPC-Induced alveolar bone regeneration. Int J Mol Sci, 23 (2022).

- 134. Li D, He J, Fang C, Zhang Y, He M, Zhang Z, Hou J, Xu Q. METTL3 regulates osteoclast biological behaviors via iNOS/NO-Mediated mitochondrial dysfunction in inflammatory conditions. Int J Mol Sci, 24 (2023).
- Wang C, Zhang X, Chen R, Zhu X, Lian N. EGR1 mediates METTL3/m(6) A/CHI3L1 to promote osteoclastogenesis in osteoporosis. Genomics. 2023;115:110696.
- 136. Wang W, Qiao SC, Wu XB, Sun B, Yang JG, Li X, Zhang X, Qian SJ, Gu YX, Lai HC. Circ_0008542 in osteoblast exosomes promotes osteoclast-induced bone resorption through m6A methylation. Cell Death Dis. 2021;12:628.
- Deng M, Luo J, Cao H, Li Y, Chen L, Liu G. METTL14 represses osteoclast formation to ameliorate osteoporosis via enhancing GPX4 mRNA stability. Environ Toxicol. 2023;38:2057–68.
- Luo L, Cao H, Zhou L, Zhang G, Wu L. Anti-resorption role of low-intensity pulsed ultrasound (LIPUS) during large-scale bone reconstruction using porous titanium alloy scaffolds through inhibiting osteoclast differentiation. Biomater Adv. 2023;154:213634.
- 139. Zhuang JP, Ning H, Wang MQ, Zhao W, Jing YB, Liu XQ, Zu JN, Kong PY, Wang XY, Sun CH, Yan JL. Downregulated fat mass and obesity-associated protein inhibits bone resorption and osteoclastogenesis by nuclear factor-kappa B inactivation. Cell Signal, 87 (2021).
- 140. He J, Zhao Y, Zhang Y, Zhang Z, Li D, Xu Q. FTO regulates osteoclast development by modulating the proliferation and apoptosis of osteoclast precursors in inflammatory conditions. Cell Signal. 2024;117:111098.
- He M, Li D, Fang C, Xu Q. YTHDF1 regulates Endoplasmic reticulum stress, NF-Kappa B, MAPK and PI3K-AKT signaling pathways in inflammatory osteoclastogenesis. Arch Biochem Biophys, 732 (2022).
- 142. Fang C, He M, Li D, Xu Q. YTHDF2 mediates LPS-induced osteoclastogenesis and inflammatory response via the NF-κB and MAPK signaling pathways. Cell Signal. 2021;85:110060.
- 143. Zhang M, Guan J, Yu S, Zhang Y, Cheng L, Zhang Y. YTHDC1 inhibits osteoclast differentiation to alleviate osteoporosis by enhancing PTPN6 mRNA stability in an m6A-HUR dependent manner. J Leukoc Biol, (2024).
- 144. Hwang CD, Pagani CA, Nunez JH, Cherief M, Qin Q, Gomez-Salazar M, Kadaikal B, Kang H, Chowdary AR, Patel N, James AW, Levi B. Contemporary perspectives on heterotopic ossification. JCI Insight, 7 (2022).
- Liu J, Chen Y, Shan X, Wang H. Investigation of the biomarkers involved in ectopic ossification: the shared mechanism in ossification of the spinal ligament. Front Genet, 13 (2022).
- 146. Zhang B, Yuan L, Chen G, Chen X, Yang X, Fan T, Sun C, Fan D, Chen Z. Deciphering Obesity-Related gene clusters unearths SOCS3 immune infiltrates and 5mC/m6A modifiers in ossification of ligamentum flavum pathogenesis. Front Endocrinol, 13 (2022).
- 147. Wang HF, Kuang MJ, Han SJ, Wang AB, Qiu J, Wang F, Tan BY, Wang DC. BMP2 modified by the m(6)A demethylation enzyme ALKBH5 in the ossification of the ligamentum flavum through the AKT signaling pathway. Calcif Tissue Int. 2020;106:486–93.
- 148. Yuan XQ, Shi L, Guo YF, Sun JC, Miao JH, Shi JG, Chen Y. METTL3 regulates ossification of the posterior longitudinal ligament via the LncRNA XIST/miR-302a-3p/USP8 Axis. Front Cell Dev Biology, 9 (2021).
- 149. Ouyang L, Su X, Li W, Tang L, Zhang M, Zhu Y, Xie C, Zhang P, Chen J, Huang H. ALKBH1-demethylated DNA N6-methyladenine modification triggers vascular calcification via osteogenic reprogramming in chronic kidney disease. J Clin Invest, 131 (2021).
- Zhou T, Han D, Liu J, Shi J, Zhu P, Wang Y, Dong N. Factors influencing osteogenic differentiation of human aortic valve interstitial cells. J Thorac Cardiovasc Surg. 2021;161:e163–85.
- Roberts S, Colombier P, Sowman A, Mennan C, Rölfing JH, Guicheux J, Edwards JR. Ageing in the musculoskeletal system. Acta Orthop. 2016;87:15–25.
- 152. Liu H, Zheng YL, Wang XQ. The emerging roles of N(6)-methyladenosine in osteoarthritis. Front Mol Neurosci. 2022;15:1040699.
- Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of Proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7:33–42.
- 154. Xiao L, Zhao Q, Hu B, Wang J, Liu C, Xu H. METTL3 promotes IL-1β-induced degeneration of endplate chondrocytes by driving m6A-dependent maturation of miR-126-5p. J Cell Mol Med. 2020;24:14013–25.
- 155. Tang Y, Hong F, Ding S, Yang J, Zhang M, Ma Y, Zheng Q, Yang D, Jin Y, Ma C. METTL3-mediated m6A modification of IGFBP7-OT promotes osteoarthritis

progression by regulating the DNMT1/DNMT3a-IGFBP7 axis. Cell Rep, 42 (2023).

- 156. Liu Y, Yang Y, Lin Y, Wei B, Hu X, Xu L, Zhang W, Lu J. N(6) -methyladenosinemodified circrna RERE modulates osteoarthritis by regulating β-catenin ubiquitination and degradation. Cell Prolif. 2023;56:e13297.
- 157. He Y, Wang W, Xu XX, Yang BN, Yu XJ, Wu YR, Wang JW. Mettl3 inhibits the apoptosis and autophagy of chondrocytes in inflammation through mediating Bcl(2) stability via Ythdf1-mediated m(6)A modification, Bone, 154 (2022).
- Liu W, Jiang T, Zheng W, Zhang J, Li A, Lu C, Lin Z. FTO-mediated m6A demethylation of pri-miR-3591 alleviates osteoarthritis progression. Arthritis Res Ther. 2023;25:53.
- 159. Yang J, Zhang M, Yang D, Ma Y, Tang Y, Xing M, Li L, Chen L, Jin Y, Ma C. m(6) A-mediated upregulation of AC008 promotes osteoarthritis progression through the miR-328-3p–AQP1/ANKH axis. Exp Mol Med. 2021;53:1723–34.
- 160. Tang Y, Liu Y, Zhu X, Chen Y, Jiang X, Ding S, Zheng Q, Zhang M, Yang J, Ma Y, Xing M, Zhang Z, Ding H, Jin Y, Ma C. ALKBH5-mediated m(6)A demethylation of HS3ST3B1-IT1 prevents osteoarthritis progression, iScience, 26 (2023) 107838.
- 161. Liu Q, Li M, Jiang L, Jiang R, Fu B. METTL3 promotes experimental osteoarthritis development by regulating inflammatory response and apoptosis in chondrocyte. Biochem Biophys Res Commun. 2019;516:22–7.
- 162. Ren J, Li Y, Wuermanbieke S, Hu S, Huang G. N(6)-methyladenosine (m(6)A) methyltransferase METTL3-mediated LINC00680 accelerates osteoarthritis through m(6)A/SIRT1 manner. Cell Death Discov. 2022;8:240.
- 163. Sang W, Xue S, Jiang Y, Lu H, Zhu L, Wang C, Ma J. METTL3 involves the progression of osteoarthritis probably by affecting ECM degradation and regulating the inflammatory response. Life Sci. 2021;278:119528.
- Lin Z, Jiang T, Zheng W, Zhang J, Li A, Lu C, Liu W. N6-methyladenosine (m6A) methyltransferase WTAP-mediated miR-92b-5p accelerates osteoarthritis progression. Cell Communication Signal, 21 (2023).
- 165. van den Bosch MHJ. Inflammation in osteoarthritis: is it time to dampen the alarm(in) in this debilitating disease? Clin Exp Immunol. 2019;195:153–66.
- 166. Liu Z, Liu H, Li D, Ma L, Lu T, Sun H, Zhang Y, Yang H. Comprehensive analysis of m6A RNA methylation modification patterns and the immune microenvironment in osteoarthritis. Front Immunol. 2023;14:1128459.
- 167. Shi L, Hu H, Sun P, Li Z, Ji L, Liu S, Zhang J. RPL38 knockdown inhibits the inflammation and apoptosis in chondrocytes through regulating METTL3-mediated SOCS2 m6A modification in osteoarthritis. Inflamm Res. 2022;71:977–89.
- 168. Zhou H, Shen X, Yan C, Xiong W, Ma Z, Tan Z, Wang J, Li Y, Liu J, Duan A, Liu F. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate osteoarthritis of the knee in mice model by interacting with METTL3 to reduce m6A of NLRP3 in macrophage. Stem Cell Research & Therapy; 2022. p. 13.
- 169. An X, Wang R, Lv Z, Wu W, Sun Z, Wu R, Yan W, Jiang Q, Xu X. WTAP-mediated m(6)A modification of FRZB triggers the inflammatory response via the Wnt signaling pathway in osteoarthritis. Exp Mol Med. 2024;56:156–67.
- 170. Cai D, Zhang J, Yang J, Lv Q, Zhong C. Overexpression of FTO alleviates osteoarthritis by regulating the processing of miR-515-5p and the TLR4/MyD88/ NF-κB axis. Int Immunopharmacol. 2023;114:109524.
- 171. Yu B, Zeng A, Liu H, Yang Z, Fu M. MiR-654-3p, reduced by the excessive ALKBH5, alleviated the inflammation in OA by targeting TNFRSF9, the trigger of the NF-kB pathway, biochemical and biophysical research communications. 2022:634;30–9.
- 172. Lu Y, Zhang H, Pan H, Zhang Z, Zeng H, Xie H, Yin J, Tang W, Lin R, Zeng C, Cai D. Expression pattern analysis of m6A regulators reveals IGF2BP3 as a key modulator in osteoarthritis synovial macrophages. J Transl Med. 2023;21:339.
- 173. Raisz LG. Pathogenesis of postmenopausal osteoporosis. Rev Endocr Metab Disord. 2001;2:5–12.
- 174. Komori T. Whole aspect of Runx2 functions in skeletal development. Int J Mol Sci, 23 (2022).
- 175. Zhou S, Zhang G, Wang K, Yang Z, Tan Y. METTL3 potentiates osteogenic differentiation of bone marrow mesenchymal stem cells via IGF2BP1/m6A/ RUNX2, Oral diseases, (2023).
- 176. Sun X, Meng X, Piao Y, Dong S, Dong Q. METTL3 promotes osteogenic differentiation of human periodontal ligament stem cells through IGF2BP1-Mediated regulation of Runx2 stability. Int J Med Sci. 2024;21:664–73.
- 177. Liu T, Zheng XF, Wang CL, Wang CD, Jiang SD, Li B, Chen PB, Xu WN, Zheng HL, Yang RZ, Huang XX, Zhang XL, Jiang LS. The m(6)A reader YTHDF1 promotes osteogenesis of bone marrow mesenchymal stem cells through translational control of ZNF839. Volume 12. Cell Death & Disease; 2021.

- 178. Xu M, Li B, Huang J, Jia R, Guo J. The N6-methyladenosine demethylase FTO is required for odontoblast differentiation in vitro and dentine formation in mice by promoting RUNX2 exon 5 inclusion through RBM4. Int Endod J. 2023;56:1534–49.
- 179. Cai W, Ji Y, Han L, Zhang J, Ni Y, Cheng Y, Zhang Y. METTL3-Dependent Glycolysis regulates dental pulp stem cell differentiation. J Dent Res. 2022;101:580–9.
- Lin YF, Shen XM, Ke YZ, Lan C, Chen XY, Liang B, Zhang YZ, Yan SJ. Activation of osteoblast ferroptosis via the METTL3/ASK1-p38 signaling pathway in high glucose and high fat (HGHF)-induced diabetic bone loss. Faseb J, 36 (2022).
- 181. Chen LS, Zhang M, Chen P, Xiong XF, Liu PQ, Wang HB, Wang JJ, Shen J. The m(6)A demethylase FTO promotes the osteogenesis of mesenchymal stem cells by downregulating PPARG. Acta Pharmacol Sin. 2022;43:1311–23.
- 182. Zhang Q, Riddle RC, Yang Q, Rosen CR, Guttridge DC, Dirckx N, Faugere MC, Farber CR, Clemens TL. The RNA demethylase FTO is required for maintenance of bone mass and functions to protect osteoblasts from genotoxic damage. Proc Natl Acad Sci USA. 2019;116:17980–9.
- 183. Li X, Fan C, Wang J, Li P, Xu X, Guo R, Wei J, Cheng Y, Lin H, Fu X. Follicle-stimulating hormone accelerates osteoclast migration by enhancing methyltransferase-like 3-mediated m6A methylation of cathepsin K. J Mol Endocrinol, 72 (2024).
- 184. Yang JG, Sun B, Wang Z, Li X, Gao JH, Qian JJ, Li J, Wei WJ, Zhang P, Wang W. Exosome-targeted delivery of METTL14 regulates NFATc1 m6A methylation levels to correct osteoclast-induced bone resorption. Cell Death Dis. 2023;14:738.
- 185. Wang X, Zou C, Li M, Hou C, Jiang W, Bian Z, Zhu L. METTL14 upregulates TCF1 through m6A mRNA methylation to stimulate osteogenic activity in osteoporosis. Human Cell; 2022.
- Wang C, Chen R, Zhu X, Zhang X, Lian N. METTL14 alleviates the development of osteoporosis in ovariectomized mice by upregulating m6A level of SIRT1 mRNA, Bone, 168 (2023).
- 187. Shen X, Lan C, Lin Y, Zhang F, Zhang Y, Chen M, Yan S. Suppression of TLR4 prevents diabetic bone loss by regulating FTO-mediated m(6)A modification. Int Immunopharmacol. 2023;122:110510.
- de Paula FJA, Rosen CJ. Marrow adipocytes: origin, structure, and function. Annu Rev Physiol. 2020;82:461–84.
- Huang M, Guo J, Liu L, Jin H, Chen X, Zou J. m6A demethylase FTO and osteoporosis: potential therapeutic interventions. Front Cell Dev Biol. 2023;11:1275475.
- Du ZY, Zhu HL, Chang W, Zhang YF, Ling Q, Wang KW, Zhang J, Zhang QB, Kan XL, Wang QN, Wang H, Zhou Y. Maternal prednisone exposure during pregnancy elevates susceptibility to osteoporosis in female offspring: the role of mitophagy/FNDC5 alteration in skeletal muscle. J Hazard Mater. 2024;469:133997.
- 191. Zhu B, Chen HX, Li S, Tan JH, Xie Y, Zou MX, Wang C, Xue JB, Li XL, Cao Y, Yan YG. Comprehensive analysis of N6-methyladenosine (m(6)A) modification during the degeneration of lumbar intervertebral disc in mice. J Orthop Translat. 2021;31:126–38.
- 192. Fang S, Zeng F, Chen R, Li M. SIAH1 promotes senescence and apoptosis of nucleus pulposus cells to exacerbate disc degeneration through ubiquitinating XIAP. Tissue Cell. 2022;76:101820.
- 193. Yuan X, Li T, Shi L, Miao J, Guo Y, Chen Y. Human umbilical cord mesenchymal stem cells deliver exogenous miR-26a-5p via exosomes to inhibit nucleus pulposus cell pyroptosis through METTL14/NLRP3. Mol Med. 2021;27:91.
- 194. Tu J, Li W, Hansbro PM, Yan Q, Bai X, Donovan C, Kim RY, Galvao I, Das A, Yang C, Zou J, Diwan A. Smoking and tetramer tryptase accelerate intervertebral disc degeneration by inducing METTL14-mediated DIXDC1 m(6) modification. Mol Ther. 2023;31:2524–42.
- Chen PB, Shi GX, Liu T, Li B, Jiang SD, Zheng XF, Jiang LS. Oxidative Stress Aggravates Apoptosis of Nucleus Pulposus Cells through m(6)A Modification of MAT2A Pre-mRNA by METTL16, Oxid Med Cell Longev. 2022;2022:4036274.
- 196. Li G, Song Y, Liao Z, Wang K, Luo R, Lu S, Zhao K, Feng X, Liang H, Ma L, Wang B, Ke W, Yin H, Zhan S, Li S, Wu X, Zhang Y, Yang C. Bone-derived mesenchymal stem cells alleviate compression-induced apoptosis of nucleus pulposus cells by N6 Methyladenosine of autophagy. Cell Death Dis. 2020;11:103.
- 197. Li G, Luo R, Zhang W, He S, Wang B, Liang H, Song Y, Ke W, Shi Y, Feng X, Zhao K, Wu X, Zhang Y, Wang K, Yang C. m6A hypomethylation of DNMT3B regulated by ALKBH5 promotes intervertebral disc degeneration via E4F1 deficiency. Clin Transl Med. 2022;12:e765.
- Gao D, Hu B, Ding B, Zhao Q, Zhang Y, Xiao L. N6-Methyladenosine-induced miR-143-3p promotes intervertebral disc degeneration by regulating SOX5, bone. 2022;163:116503.

- 199. Zhu H, Sun B, Zhu L, Zou G, Shen Q. N6-Methyladenosine induced miR-34a-5p promotes TNF-α-Induced nucleus pulposus cell senescence by targeting SIRT1. Front Cell Dev Biol. 2021;9:642437.
- Li G, Ma L, He S, Luo R, Wang B, Zhang W, Song Y, Liao Z, Ke W, Xiang Q, Feng X, Wu X, Zhang Y, Wang K, Yang C. WTAP-mediated m(6)A modification of LncRNA NORAD promotes intervertebral disc degeneration. Nat Commun. 2022;13:1469.
- 201. Chen Z, Song J, Xie L, Xu G, Zheng C, Xia X, Lu F, Ma X, Zou F, Jiang J, Wang H. N6-methyladenosine hypomethylation of circGPATCH2L regulates DNA damage and apoptosis through TRIM28 in intervertebral disc degeneration. Cell Death Differ. 2023;30:1957–72.
- 202. Xiao L, Hu B, Ding B, Zhao Q, Liu C, Öner FC, Xu H. N(6)-methyladenosine RNA methyltransferase like 3 inhibits extracellular matrix synthesis of endplate chondrocytes by downregulating sex-determining region Y-Box transcription factor 9 expression under tension. Osteoarthritis Cartilage. 2022;30:613–25.
- 203. Gan L, Zhao Y, Fu Y, Chen Q. The potential role of m6A modifications on immune cells and immunotherapy. Biomed Pharmacother. 2023;160:114343.
- Lin X, Tao C, Zhang R, Zhang M, Wang Q, Chen J. N6-methyladenosine modification of TGM2 mRNA contributes to the inhibitory activity of Sarsasapogenin in rheumatoid arthritis fibroblast-like synoviocytes. Phytomedicine. 2022;95:153871.
- Li X, Xu X, Zhang Q, Ling M, Li X, Tan X. METTL14 promotes fibroblast-like synoviocytes activation via the LASP1/SRC/AKT axis in rheumatoid arthritis. Am J Physiol Cell Physiol. 2023;324:C1089–100.
- Tang J, Yu Z, Xia J, Jiang R, Chen S, Ye D, Sheng H, Lin J. METTL14-Mediated m6A modification of TNFAIP3 involved in inflammation in patients with active rheumatoid arthritis. Arthritis Rheumatol. 2023;75:2116–29.
- 207. Miao T, Qiu Y, Chen J, Li P, Li H, Zhou W, Shen W. METTL3 knockdown suppresses RA-FLS activation through m(6)A-YTHDC2-mediated regulation of AMIGO2. Biochim Biophys Acta Mol Basis Dis. 2024;1870:167112.
- Zhang X, Li X, Jia H, An G, Ni J. The m(6)A methyltransferase METTL3 modifies PGC-1α mRNA promoting mitochondrial dysfunction and oxLDL-induced inflammation in monocytes. J Biol Chem. 2021;297:101058.
- 209. Wen J, Liu J, Wan L, Jiang H, Xin L, Sun Y, Fang Y, Wang X, Wang J. m(6) A-mediated LncRNA MAPKAPK5-AS1 induces apoptosis and suppresses inflammation via regulating miR-146a-3p/SIRT1/NF-kB axis in rheumatoid arthritis. Cell Cycle. 2023;22:2602–21.
- Huang Y, Xu P, Liao F, Ca H, Wang X, Wang X, Chang J, Miao C. Fat mass and obesity-associated protein inhibit the pathology of rheumatoid arthritis through the NSUN2/SFRP1/Wnt/β-catenin signal axis. J Pharm Pharmacol. 2024;76:283–94.
- 211. Fan D, Geng Q, Wang B, Wang X, Xia Y, Yang L, Zhang Q, Deng T, Xu Y, Zhao H, Liu B, Lu C, Gu X, Xiao C. Hypoxia-induced ALKBH5 aggravates synovial aggression and inflammation in rheumatoid arthritis by regulating the m6A modification of CH25H. Clin Immunol. 2024;261:109929.
- 212. Liu D, Li R, Xu S, Shi M, Kuang Y, Wang J, Shen C, Qiu Q, Liang L, Xiao Y, Xu H. SMOC2 promotes aggressive behavior of fibroblast-like synoviocytes in rheumatoid arthritis through transcriptional and post-transcriptional regulating MYO1C. Cell Death Dis. 2022;13:1035.
- 213. Kuang Y, Li R, Wang J, Xu S, Qiu Q, Lin S, Liu D, Shen C, Liu Y, Xu M, Lin W, Zhang S, Liang L, Xu H, Xiao Y. ALKBH5-Mediated RNA m(6) A methylation regulates the migration, invasion, and proliferation of rheumatoid Fibroblast-Like synoviocytes. Arthritis Rheumatol. 2024;76:192–205.
- 214. Xiao J, Cai X, Wang R, Zhou W, Ye Z. ALKBH5-YTHDF2 m6A modification axis inhibits rheumatoid arthritis progression by suppressing NLRP3. Biochem Biophys Res Commun. 2023;668:70–6.
- An X, Wu W, Yang L, Dong J, Liu B, Guo J, Chen J, Guo B, Cao W, Jiang Q. ZBTB7C m6A modification incurred by METTL3 aberration promotes osteosarcoma progression. Transl Res. 2023;259:62–71.
- 216. Zhou L, Yang C, Zhang N, Zhang X, Zhao T, Yu J. Silencing METTL3 inhibits the proliferation and invasion of osteosarcoma by regulating ATAD2. Biomed Pharmacother. 2020;125:109964.
- Jiang R, Dai Z, Wu J, Ji S, Sun Y, Yang W. METTL3 stabilizes HDAC5 mRNA in an m(6)A-dependent manner to facilitate malignant proliferation of osteosarcoma cells. Cell Death Discov. 2022;8:179.
- Zhou C, Zhang Z, Zhu X, Qian G, Zhou Y, Sun Y, Yu W, Wang J, Lu H, Lin F, Shen Z, Zheng S. N6-Methyladenosine modification of the TRIM7 positively regulates tumorigenesis and chemoresistance in osteosarcoma through ubiquitination of BRMS1, ebiomedicine. 2020;59:102955.
- Liu F, Li W, Jin Z, Ye J. METTL3-mediated m6A modification of circRNF220 modulates miR-330-5p/survivin axis to promote osteosarcoma progression. J Cancer Res Clin Oncol. 2023;149:17347–60.

- 221. Ren Z, Hu Y, Sun J, Kang Y, Li G, Zhao H. N(6)-methyladenosine methyltransferase WTAP-stabilized FOXD2-AS1 promotes the osteosarcoma progression through m(6)A/FOXM1 axis, bioengineered. 2022;13:7963–73.
- 222. Liu Z, Liu N, Huang Z, Wang W. METTL14 overexpression promotes osteosarcoma cell apoptosis and slows tumor progression via caspase 3 activation. Cancer Manag Res. 2020;12:12759–67.
- Chen S, Zhou L, Wang Y. ALKBH5-mediated m(6)A demethylation of LncRNA PVT1 plays an oncogenic role in osteosarcoma. Cancer Cell Int. 2020;20:34.
- 224. Yuan Y, Yan G, He M, Lei H, Li L, Wang Y, He X, Li G, Wang Q, Gao Y, Qu Z, Mei Z, Shen Z, Pu J, Wang A, Zhao W, Jiang H, Du W, Yang L. ALKBH5 suppresses tumor progression via an m(6)A-dependent epigenetic Silencing of pre-miR-181b-1/YAP signaling axis in osteosarcoma. Cell Death Dis. 2021;12:60.
- 225. Mei Z, Shen Z, Pu J, Liu Q, Liu G, He X, Wang Y, Yue J, Ge S, Li T, Yuan Y, Yang L. NAT10 mediated ac4C acetylation driven m(6)A modification via involvement of YTHDC1-LDHA/PFKM regulates Glycolysis and promotes osteosarcoma. Cell Commun Signal. 2024;22:51.
- 226. Liu D, Li Z, Zhang K, Lu D, Zhou D, Meng Y. N(6)-methyladenosine reader YTHDF3 contributes to the aerobic Glycolysis of osteosarcoma through stabilizing PGK1 stability. J Cancer Res Clin Oncol. 2023;149:4601–10.
- 227. Miao W, Chen J, Jia L, Ma J, Song D. The m6A methyltransferase METTL3 promotes osteosarcoma progression by regulating the m6A level of LEF1. Biochem Biophys Res Commun. 2019;516:719–25.
- 228. Lv D, Ding S, Zhong L, Tu J, Li H, Yao H, Zou Y, Zeng Z, Liao Y, Wan X, Wen L, Xie X. M(6)A demethylase FTO-mediated downregulation of DACT1 mRNA stability promotes Wnt signaling to facilitate osteosarcoma progression. Oncogene. 2022;41:1727–41.
- 229. Yang Z, Cai Z, Yang C, Luo Z, Bao X. ALKBH5 regulates STAT3 activity to affect the proliferation and tumorigenicity of osteosarcoma via an m6A-YTHDF2dependent manner, ebiomedicine. 2022;80:104019.
- Cheng J, Xu Z, Tan W, He J, Pan B, Zhang Y, Deng Y. METTL16 promotes osteosarcoma progression by downregulating VPS33B in an m(6) A-dependent manner. J Cell Physiol. 2024;239:e31068.
- Chen S, Li Y, Zhi S, Ding Z, Wang W, Peng Y, Huang Y, Zheng R, Yu H, Wang J, Hu M, Miao J, Li J. WTAP promotes osteosarcoma tumorigenesis by repressing HMBOX1 expression in an m(6)A-dependent manner. Cell Death Dis. 2020;11:659.
- 232. Cao D, Ge S, Li M. MiR-451a promotes cell growth, migration and EMT in osteosarcoma by regulating YTHDC1-mediated m6A methylation to activate the AKT/mTOR signaling pathway. J Bone Oncol. 2022;33:100412.
- 233. Huang X, Yang Z, Li Y, Long X. m6A methyltransferase METTL3 facilitates multiple myeloma cell growth through the m6A modification of BZW2. Ann Hematol. 2023;102:1801–10.
- 234. Chen CJ, Huang JY, Huang JQ, Deng JY, Shangguan XH, Chen AZ, Chen LT, Wu WH. Metformin attenuates multiple myeloma cell proliferation and encourages apoptosis by suppressing METTL3-mediated m6A methylation of THRAP3, RBM25, and USP4. Cell Cycle. 2023;22:986–1004.
- Che F, Ye X, Wang Y, Wang X, Ma S, Tan Y, Mao Y, Luo Z. METTL3 facilitates multiple myeloma tumorigenesis by enhancing YY1 stability and primicroRNA-27 maturation in m(6)A-dependent manner. Cell Biol Toxicol. 2023;39:2033–50.
- Bao J, Xu T, Wang W, Xu H, Chen X, Xia R. N6-methyladenosine-induced miR-182-5p promotes multiple myeloma tumorigenesis by regulating CAMK2N1. Mol Cell Biochem, (2024).
- 237. Jia Y, Yu X, Liu R, Shi L, Jin H, Yang D, Zhang X, Shen Y, Feng Y, Zhang P, Yang Y, Zhang L, Zhang P, Li Z, He A, Kong G. PRMT1 methylation of WTAP promotes multiple myeloma tumorigenesis by activating oxidative phosphorylation via m6A modification of NDUFS6. Cell Death Dis. 2023;14:512.
- Yao L, Li T, Teng Y, Guo J, Zhang H, Xia L, Wu Q. ALKHB5-demethylated LncRNA SNHG15 promotes myeloma tumorigenicity by increasing chromatin accessibility and recruiting H3K36me3 modifier SETD2. Am J Physiol Cell Physiol. 2024;326:C684–97.
- 239. Qu J, Hou Y, Chen Q, Chen J, Li Y, Zhang E, Gu H, Xu R, Liu Y, Cao W, Zhang J, Cao L, He J, Cai Z. RNA demethylase ALKBH5 promotes tumorigenesis in multiple myeloma via TRAF1-mediated activation of NF-κB and MAPK signaling pathways. Oncogene. 2022;41:400–13.
- Wang C, Li L, Li M, Wang W, Jiang Z. FTO promotes bortezomib resistance via m6A-dependent destabilization of SOD2 expression in multiple myeloma. Cancer Gene Ther. 2023;30:622–8.

- 241. Song S, Fan G, Li Q, Su Q, Zhang X, Xue X, Wang Z, Qian C, Jin Z, Li B, Zhuang W. IDH2 contributes to tumorigenesis and poor prognosis by regulating m6A RNA methylation in multiple myeloma. Oncogene. 2021;40:5393–402.
- 242. Jiang F, Tang X, Tang C, Hua Z, Ke M, Wang C, Zhao J, Gao S, Jurczyszyn A, Janz S, Beksac M, Zhan F, Gu C, Yang Y. HNRNPA2B1 promotes multiple myeloma progression by increasing AKT3 expression via m6A-dependent stabilization of ILF3 mRNA. J Hematol Oncol. 2021;14:54.
- Jia C, Guo Y, Chen Y, Wang X, Xu Q, Zhang Y, Quan L. HNRNPA2B1-mediated m6A modification of TLR4 mRNA promotes progression of multiple myeloma. J Transl Med. 2022;20:537.
- 244. Liu R, Zhong Y, Chen R, Chu C, Liu G, Zhou Y, Huang Y, Fang Z. Liu, m6A reader hnRNPA2B1 drives multiple myeloma osteolytic bone disease. Theranostics. 2022;12:7760–74.
- 245. Liu R, Miao J, Jia Y, Kong G, Hong F, Li F, Zhai M, Zhang R, Liu J, Xu X, Wang T, Liu H, Hu J, Yang Y, He A. N6-methyladenosine reader YTHDF2 promotes multiple myeloma cell proliferation through EGR1/p21(cip1/waf1)/CDK2-Cyclin E1 axis-mediated cell cycle transition. Oncogene. 2023;42:1607–19.
- Hua Z, Wei R, Guo M, Lin Z, Yu X, Li X, Gu C, Yang Y. YTHDF2 promotes multiple myeloma cell proliferation via STAT5A/MAP2K2/p-ERK axis. Oncogene. 2022;41:1482–91.
- 247. Wen S, Wei Y, Zen C, Xiong W, Niu Y, Zhao Y. Long non-coding RNA NEAT1 promotes bone metastasis of prostate cancer through N6-methyladenosine. Mol Cancer. 2020;19:171.
- 248. Zhao Y, Wen S, Li H, Pan CW, Wei Y, Huang T, Li Z, Yang Y, Fan S, Zhang Y. Enhancer RNA promotes resistance to radiotherapy in bone-metastatic prostate cancer by m(6)A modification, Theranostics. 2023;13:596–610.
- 249. Lang C, Yin C, Lin K, Li Y, Yang Q, Wu Z, Du H, Ren D, Dai Y, Peng X. m(6) A modification of LncRNA PCAT6 promotes bone metastasis in prostate cancer through IGF2BP2-mediated IGF1R mRNA stabilization. Clin Transl Med. 2021;11:e426.
- 250. Zhang S, Lv C, Niu Y, Li C, Li X, Shang Y, Zhang Y, Zhang Y, Zhang Y, Zeng Y. RBM3 suppresses stemness remodeling of prostate cancer in bone microenvironment by modulating N6-methyladenosine on CTNNB1 mRNA. Cell Death Dis. 2023;14:91.
- 251. Zheng H, Cheng ZJ, Liang B, Wang ZG, Tao YP, Huang SY, Ni JS, Li HF, Yang L, Yuan SX, Wu J, Kawaguchi T, Samant H, Zhou WP, Xiang DM, Yang Y. N(6)-Methyladenosine modification of ANLN enhances hepatocellular carcinoma bone metastasis. Int J Biol Sci. 2023;19:1009–23.
- 252. Zhang M, Wang J, Jin Y, Zheng Q, Xing M, Tang Y, Ma Y, Li L, Yao B, Wu H, Ma C. YTHDF2-mediated FGF14-AS2 decay promotes osteolytic metastasis of breast cancer by enhancing RUNX2 mRNA translation. Br J Cancer. 2022;127:2141–53.
- Chen Y, Hong T, Wang S, Mo J, Tian T, Zhou X. Epigenetic modification of nucleic acids: from basic studies to medical applications. Chem Soc Rev. 2017;46:2844–72.
- Ma XX, Zhou XY, Feng MG, Ji YT, Song FF, Tang QC, He Q, Zhang YF. Dual role of IGF2BP2 in osteoimmunomodulation during periodontitis. J Dent Res. 2024;103:208–17.
- Patil DP, Pickering BF, Jaffrey SR. Reading m(6)A in the transcriptome: m(6) A-Binding proteins. Trends Cell Biol. 2018;28:113–27.
- 256. Yang D, Zhao G, Zhang HM. m(6)A reader proteins: the executive factors in modulating viral replication and host immune response. Front Cell Infect Microbiol. 2023;13:1151069.
- 257. Cheng Y, Xie W, Pickering BF, Chu KL, Savino AM, Yang X, Luo H, Nguyen DT, Mo S, Barin E, Velleca A, Rohwetter TM, Patel DJ, Jaffrey SR, Kharas MG. N(6)-Methyladenosine on mRNA facilitates a phase-separated nuclear body that suppresses myeloid leukemic differentiation. Cancer Cell. 2021;39:958–e972958.
- 258. Frye M, Harada BT, Behm M, He C. RNA modifications modulate gene expression during development. Science. 2018;361:1346–9.
- Yang Y, Lu Y, Wang Y, Wen X, Qi C, Piao W, Jin H. Current progress in strategies to profile transcriptomic m(6)A modifications. Front Cell Dev Biol. 2024;12:1392159.
- 260. Liu XM, Qian SB. Targeted RNA m(6)A editing using engineered CRISPR-Cas9 conjugates. Methods Mol Biol. 2021;2298:399–414.
- 261. An Y, Duan H. The role of m6A RNA methylation in cancer metabolism. Mol Cancer. 2022;21:14.
- Liu XM, Zhou J, Mao Y, Ji Q, Qian SB. Programmable RNA N(6)methyladenosine editing by CRISPR-Cas9 conjugates. Nat Chem Biol. 2019;15:865–71.
- Zou D, Huang X, Lan Y, Pan M, Xie J, Huang Q, Zeng J, Zou C, Pei Z, Zou C, Mao Y, Luo J. Single-cell and Spatial transcriptomics reveals that PTPRG activates

265. Zhu H, Cai Ć, Yu Y, Zhou Y, Yang S, Hu Y, Zhu Y, Zhou J, Zhao J, Ma H, Chen Y, Xu Y. Quercetin-Loaded bioglass injectable hydrogel promotes m6A

alteration of Per1 to alleviate oxidative stress for periodontal bone defects. Adv Sci (Weinh). 2024;11:e2403412.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.