
Introduction

Mesenchymal stem cells (MSCs) were originally des-

cribed by Friedenstein and colleagues [1,2] in the non-

hematopoietic component of bone marrow where they 

participate in regulating hematopoietic stem cell matura-

tion and emigration into the circulation. Since that time, 

they have been isolated from the connective tissue of 

almost all organs, including adipose, periosteum, synovial 

fl uid, muscle, hair follicles, root of deciduous teeth, 

articular cartilage, placenta, dermis, umbilical cord, 

Wharton’s jelly, lung, liver and spleen [3-5]. It has been 

posited that MSCs in these organs, like other stem cells, 

function as a source of cells for replacement and 

regeneration during normal cellular turnover, repair of 

injured tissue, or in response to biological aging.

MSCs were identifi ed based on their ability to undergo 

diff erentiation into mesenchymal lineage cell types, 

including bone, cartilage, adipose tissue, muscle and 

tendon [4]. Th e diff erentiation capacity of MSCs was 

initially thought to be limited to their tissue of origin; 

however, studies have demonstrated that MSCs have the 

capacity to diff erentiate into cells of mesodermal, 

endodermal and ectodermal origins, at least in vitro

[4,6-8]. Th e therapeutic application of MSCs was 

suggested from early observations in preclinical animal 

models of disease, in which transplanted MSCs homed to 

sites of infl ammation within damaged tissues where some 

of the transplanted cells underwent diff erentiation to 

replace injured cells. However, it quickly became evident 

in a variety of disease models that the levels of improve-

ment mediated by MSCs do not always correlate with the 

levels of cellular engraftment and diff erentiation ob-

served. As such, diff erentiation may not be a primary 

mechanism by which MSCs mediate tissue repair. Rather, 

it has been widely reported that MSCs secrete bioactive 

levels of soluble factors (growth factors and cytokines) 

capable of paracrine regulation of diverse disease-asso-

ciated processes, including activation of tissue-resident 

stem/progenitor cells, apoptosis, stimulation of vasculo-

genesis and inhibition of infl ammation [9-15]. A rapidly 

growing body of literature indicates that MSCs possess 

immunosuppressive properties [16-23]. Th erefore, the 

reparative function of MSCs observed in so many injury 

models may be, at least in part, attributed to the produc-

tion of paracrine factors that direct inhibition of immune 

responses and function. It is also apparent that MSCs 

secrete pro-infl ammatory cytokines that may enhance 

innate immunity. Increasing evidence suggests that 

activation of Toll-like receptors (TLRs), one of the early 

immune sensors, modulates this distinct MSC activity 

[24-29]. Th e underlying factors produced by MSCs and 

their immunomodulatory mechanisms are reviewed 

here. Additionally, a newly described mechanism of 

polarization in which MSCs can be induced to be either 

pro- or anti-infl ammatory through diff erential TLR 

activation is presented.

Immununomodulation by mesenchymal stem cells

Anti-infl ammatory and immune suppressive mediators

Th e immune suppression activities of MSCs were fi rst 

described in ex vivo allogeneic co-cultures of leukocytes 
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with bone marrow-derived mesenchymal stem cells 

(BMSCs) [16,30-32]. Th ese early observations instigated 

numerous studies exploring the immunomodulatory 

eff ect of MSCs derived from a variety of sources and 

species. BMSCs express low levels of human leukocyte 

antigen (HLA) major histocompatibility complex (MHC) 

class I, do not express co-stimulatory molecules (B7-1 

and -2, CD40, or CD40L), and can be induced to express 

MHC class II and Fas ligand. Th ese features are often 

used to explain their ‘immune privileged’ status in 

allogeneic hosts. Furthermore, BMSCs inhibit dendritic 

cell maturation, B and T cell proliferation and diff eren-

tiation, attenuate natural killer cell activity, as well as 

support the production of suppressive T regulatory cells 

(Tregs) [16,33-36]. While the mechanisms underlying the 

immune modulating property of BMSCs are not fully 

understood, they are dependent on the secretion of 

soluble factors as well as direct BMSC-to-immune cell 

contact [33]. To date, at least 14 factors produced by 

BMSCs have been associated with their anti-infl am ma-

tory properties. Some soluble factors are produced by 

BMSCs constitutively while others are induced by BMSC 

interaction with infl ammatory cells and factors com-

monly present in sites of tissue injury.

Th e expression of indoleamine 2,3-dioxygenase (IDO) 

and inducible nitric-oxide synthase (iNOS) by BMSCs 

has been associated with repression of T-cell proliferation 

[37-39]. Recently, secretion of IDO by BMSCs was shown 

in vivo to both inhibit the proliferation of acetylcholine 

receptor-specifi c T cells and B cells and to normalize the 

distribution of Th 1, Th 2, Th 17 and Treg cells in experi-

mental autoimmune myasthenia gravis that is character-

ized by alteration in the balance of these four Th  subsets 

[40]. IDO catalyzes the conversion of tryptophan, an 

essential amino acid for T-cell proliferation, into 

kynurenine. IDO has been shown to exert its immuno-

suppressive eff ect through the local accumulation of 

tryptophan metabolites, rather than through tryptophan 

depletion [41]. Expression of IDO by BMSCs was thought 

to be IFN-γ dependent [37,41-44]. However, Opitz and 

colleagues [45] recently demonstrated that IDO expres-

sion in BMSCs can also be upregulated by activation of 

TLR3 and TLR4 via induction of an autocrine IFN-β 

signaling loop involving protein kinase R and indepen-

dent of IFN-γ. Interestingly, when human BMSCs were 

treated with IFN-γ in vitro, they expressed extremely 

high levels of IDO and very low levels of iNOS, whereas 

mouse BMSCs expressed abundant iNOS and very little 

IDO. Th ese data suggest there is species variation in the 

mechanisms of BMSC immunosuppression [46].

Prostaglandin E2 (PGE-2) is emerging as a central 

mediator of many of the anti-infl ammatory properties of 

BMSCs [5,35]. PGE-2 is synthesized from arachidonic 

acid by cyclooxygenase (COX) enzymes COX-1 and 

COX-2. COX-1 is constitutively expressed in BMSCs and 

COX-2 expression can be induced by infl ammatory cyto-

kines such as IL-1β, IL-6, IFN-γ and TNF-α [47]. Inhibi-

tors of PGE-2 synthesis have been shown to abrogate 

BMSC anti-proliferative eff ects on T [16,48,49] and 

natural killer cells [48,50] and almost completely abrogate 

the immunosuppressive eff ects of BMSCs in vitro [47]. 

PGE-2 also plays a major role in the BMSC-mediated 

inhibition of dendritic cell maturation [51-53]. Nemeth 

and colleagues [34] showed in an animal model of sepsis 

that BMSCs (activated by lipopolysaccharide (LPS) or 

TNF-α) release PGE-2 that acts on the EP2 and EP4 

receptors of macrophages leading to the production and 

release of IL-10, a potent anti-infl ammatory cyto kine, 

and decreased production of the pro-infl ammatory cyto-

kines TNF-α and IL-6. Th e reprogramming of macro-

phages into a regulatory-like profi le was also demon-

strated in vitro by Maggini and colleagues [54].

Transforming growth factor (TGF)-β1, a well-charac-

terized anti-infl ammatory cytokine, is constitutively 

expressed by BMSCs [31]. Neutralizing antibodies to 

TGF-β1 have been reported to impair the immuno modu-

latory function of BMSCs on T [31] and natural killer 

cells [50]. However, others have reported that TGF-β1 

has no eff ect on the immunosuppressive properties of 

BMSCs [32,55]. Th ese discrepancies may be explained by 

the experimental conditions used in these studies. Th e 

importance of TGF-β1 in vivo was recently demonstrated 

in a mouse model of ragweed-induced asthma [56]. 

Inject ing BMSCs into ragweed-sensitized mice signifi -

cantly improved lung pathology upon allergen challenge. 

Th e presence of pre-exisiting TGF-β-specifi c neutralizing 

antibodies eliminated the benefi cial eff ects of the BMSCs; 

furthermore, injection of BMSCs derived from TGF-β1 

knockout mice had no benefi cial eff ect, suggesting that 

the BMSC-derived TGF-β1 is critical in suppressing the 

allergic responses. Treatment with BMSCs also increased 

the total number of Tregs in this model. Although 

Nemeth and colleagues did not directly connect BMSC-

derived TGF-β1 to the recruitment of Tregs, Patel and 

colleagues [57] demonstrated that in co-cultures of 

peripheral blood mononuclear cells and BMSCs, TGF-β1 

produced by BMSCs resulted in increased numbers of 

Tregs.

Other factors associated with the immune modulating 

properties of BMSCs include HLA-G (reviewed in [58]), 

hepatocyte growth factor (HGF) [31,59], leukemia 

inhibitory factor (LIF) [60,61], IL1 receptor antagonist 

(IL1RA) [62,63], CCL-2 [64], galectin-3, galectin-1 and 

semaphorin-3A [65,66]. All of these soluble factors are 

capable of inhibiting T-cell proliferation, are highly 

expressed by BMSCs and thus may contribute to their 

immunosuppressive properties [65,66]. More recently, a 

new role was advanced for TNF-α-induced protein 6 
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(TNAIP6 or TSG-6) in BMSC immunosuppression. Lee 

and colleagues [67] found that intravenously infused 

human BMSCs embolized in the lung and expressed high 

levels of TSG-6. TSG-6 secretion is known to suppress 

infl am mation through the inhibition of the infl ammatory 

network of proteases primarily by increasing the inhibi-

tory activity of inter-α-inhibitor, sequestration of hya-

luro nan fragments and decreasing neutrophil infi ltra tion 

into sites of infl ammation [68-71]. In a model of acute 

infl ammation induced by myocardial infarction, the 

knockdown of TSG-6 expression by small interfering 

RNA in human BMSCs signifi cantly reduced MSC-

mediated improvements of infl ammatory responses. 

Further more, the administration of recombinant TSG-6 

protein largely duplicated the therapeutic eff ects of the 

delivered BMSCs on infl ammatory responses and infarct 

size [67]. Together these results suggest that TSG-6 may 

play a key role in the anti-infl ammatory eff ects of BMSCs.

Pro-infl ammatory mediators

Th ough we are beginning to better understand the many 

complex mechanisms associated with the secretion by 

BMSCs of immune suppressive mediators like TSG-6, so 

far only a few reports have described the contrasting pro-

infl ammatory activity of BMSCs. Indeed, the observation 

of this divergent immune eff ect by the BMSCs came from 

studies primarily focused on the downstream conse-

quences of TLR stimulation within these cells. TLRs are a 

conserved family of receptors that recognize pathogen-

associated molecular patterns (PAMPs) and promote the 

activation of immune cells [72-76]. Many TLRs (TLR1 to 

TLR13) have been identifi ed and characterized in a 

variety of immune cell types and species. Agonists for 

TLRs include exogenous microbial components, such as 

LPS (TLR2 and 4), lipoproteins and peptidoglycans 

(TLR1, 2, 6), viral RNA (TLR3), bacterial and viral un-

methylated CpG-DNA (TLR9), and endogenous mole-

cules shed following cell injury, including heat shock 

proteins and extracellular matrix molecules [72-77]. 

Specifi c agonist engagement of TLRs leads to the 

expression of infl ammatory cytokines or co-stimulatory 

molecules by a MyD88 (a TLR adapter protein)-depen-

dent or MyD88-independent signaling pathways and can 

promote chemotaxis of the stimulated cell. TLRs are 

diff erentially expressed on leukocyte subsets and non-

immune cells and may regulate important aspects of 

innate and adaptive immune responses [24,27,75,78,79].

MSCs are among the cells that express an array of 

TLRs, including TLR2, 3, 4, 5, 6 and 9 [24,27,28]. Further-

more, studies by our group established that the 

stimulation of MSCs with TLR agonists leads to the 

activa tion of downstream signaling pathways, including 

NF-kB, AKT and mitogen-activated protein kinase 

(MAPK). Consequently, activation of these pathways 

triggers the previously unreported induction and secre-

tion of pro-infl ammatory cytokines, chemokines and 

related TLR gene products. Interestingly, the unique 

patterns of aff ected genes, cytokines and chemokines 

measured identifi ed the TLRs as potential players in the 

established MSC immunomodulatory properties as well 

as their ability to migrate towards injured tissues. 

Surprisingly, we noted that TLR4 stimulation with LPS 

led to the secretion of primarily pro-infl ammatory 

media tors, such as IL-1β, IL-6, IL-8, IL-12, type I IFNs 

and TNF-α [28]. Th ough unexpected, previous observa-

tions reported by Beyth and colleagues [80] recognized 

that LPS priming aff ected co-cultures of leukocytes with 

human MSCs and attenuated the expected human MSC-

mediated inhibition of T-lymphocyte activation as well as 

aff ected their capacity to secrete interferon. More 

recently, Romieu-Mourez and colleagues [81] showed 

that TLR stimulation in murine MSCs similarly resulted 

in the production of infl ammatory mediators, such as 

IL-1, IL-6, IL-8, and CCL5. Furthermore, they demon-

strated that TLR and IFN activated murine MSCs 

injected within Matrigel matrices into mice resulted in 

the formation of an infl ammatory site attracting innate 

immune cells and resulting in a dramatic recruitment of 

neutrophils. Raicevic and colleagues [82], studying the 

eff ect of TLR activation within MSCs in an infl ammatory 

milieu, observed that this environment shifted the 

cytokine profi le to a pro-infl ammatory one rather than 

the expected immunosuppressive one. Th ey similarly 

observed an increase in IL-1β, IL-6, and IL-12 after TLR 

activation in this infl ammatory context.

Th e eff ects of TLR engagement on the typical MSC 

properties of tri-lineage diff erentiation (chondrogenic, 

osteogenic, adipogenic) and proliferation have also been 

assessed. For instance, Hwa Cho and colleagues [27] 

described a role for TLRs in proliferation and diff erentia-

tion of human adipose-derived mesenchymal stem cells 

(ASCs) [24]. In another report, murine BMSCs were 

found to express TLRs that, upon activation, aff ected 

their proliferation and diff erentiation. In contrast to 

human BMSCs, they suggested that activation of TLR2 

inhibits both diff erentiation and migration of murine 

BMSCs, while also promoting their proliferation. Liotta 

and colleagues [25] found that TLR activation had no 

eff ect on adipogenic, osteogenic, or chondrogenic diff er-

en tiation in human BMSCs. Furthermore, this report 

suggested equivalent roles for TLR3 and TLR4 engage-

ment in human MSC-mediated immune modulation in 

contrast to those reports mentioned above. Additionally, 

Lombardo and colleagues [26] reported that TLR3 and 

TLR4 engagement within ASCs increased osteogenic 

diff erentiation but had no eff ect on adipogenic diff eren-

tiation potential or proliferation. Again diff erent from the 

observations presented by Liotta and colleagues, it was 
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also determined that TLR2, TLR3, and TLR4 ligation 

does not aff ect the ability of human ASCs to suppress 

lymphocyte activation.

Th ough somewhat confounding, this recent body of 

work on the downstream consequences of TLRs provides 

emerging evidence for a new pro-infl ammatory immune 

modulating role for BMSCs. Th e identifi cation of the 

molecular details for this new pro-infl ammatory BMSC 

role, and whether it is innate or just an in vitro artifact, 

awaits further investigation. However, this novel obser-

vation is important to consider given the accelerated use 

of BMSCs in anti-infl ammatory cell-based therapies. 

Additionally, as Raicevic and colleagues [82] suggest, 

targeting of TLRs in BMSCs may avoid deleterious 

consequences in their use as anti-infl ammatory therapies. 

By contrast, TLR-activated pro-infl ammatory BMSCs 

could prove useful in breaking tolerance in the therapy of 

immune evasive diseases, such as cancer.

New MSC paradigm: polarization into a pro-

infl ammatory (MSC1) or an immunosuppressive 

(MSC2) phenotype

TLRs are vital in coordinating not only the pro-homeo-

static tissue injury responses of immune cells but also 

that of MSCs of various origins. Th e immune modulating 

activities of MSCs downstream of TLR stimulation seem 

to be more complex than originally anticipated. In an 

attempt to resolve the confl icting data between the 

immune modulating eff ect of TLR3 and TLR4 activation 

in human MSCs, our group has proposed a new MSC 

Table 1. The eff ects of toll-like receptor stimulation on mesenchymal stem cells

    Eff ect of TLR stimulation and references

Stem cell property TLR2 (Pam3Cys) TLR3 (Poly(I:C)) TLR4 (LPS+) TLR5 (Flagellin) TLR9 (CpG-ODNs)

Proliferation     

 hADSCs NC [24,26] NC [24,26] NC [24,26]   [24]

 hMSCs  NC [28,45] NC [86],  [87,88]  

 muMSCs  [27]   [27]  

Migration     

 hMSCs   [28,29]  [28,29]  [28]  [28]

 muMSCs  [27]    

Diff erentiation     

 Cartilage     

  hMSCs  NC [25] NC [25]  

  muMSCs  [27]    

 Bone     

  hADSCs  [24], NC [26]  [26], NC [24]  [24,26] NC [24]  [24]

  hMSCs    [29], NC [25]  

  muMSCs  [27]    

     

 Adipose     

  hADSCs NC [24,26] NC [24,26] NC [24,26] NC [24] NC [24,26]

  hMSCs   [29]  [29]  

  muMSCs  [27]    

Immune suppression     

 hADSCs NC [26] NC [26] NC [26]  

 hMSCs   [28,29,45]  [45]  

 muMSCs NC [27]    

Immune stimulation     

 hADSCs NC [24,26]    

 hMSCs   [25]  [25,28,29,45]  

Down arrows indicate inhibited eff ect; up arrows indicate enhanced eff ect; NC indicates no change or eff ect. hADSC, human adipose-derived stem cell; hMSC, human 
mesenchymal stem cell; LPS, lipopolysaccharide; muMSC, murine mesenchymal stem cell; ODN, oligodeoxynucleotide; poly(I:C), polyinosinic:polycytidylic acid; TLR, 
toll-like receptor.
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paradigm that takes its cue from the monocyte literature 

(Table  1). It is based on the premise that these hetero-

geneous cells can be induced to polarize into two diverse 

but homo ge neously acting phenotypes (Figure 1) [83].

It is established that stimulation of monocytes with 

known cytokines or agonists to their TLRs, including 

IFN-γ and endotoxin (LPS, TLR4-agonist), polarizes 

them into a classical M1 phenotype that participates in 

early pro-infl ammatory responses. IL-4 treatment of 

monocytes yields the alternative M2 phenotype that is 

associated with anti-infl ammatory resolution responses 

[83]. Our group proposed that human BMSCs, like 

monocytes, are polarized by downstream TLR signaling 

into two homogenously acting phenotypes, classifi ed as 

MSC1 and MSC2, following the monocyte nomenclature. 

Th e short-term, low-level exposure or ‘priming’ we 

described with TLR4 agonists polarized human BMSCs 

toward a pro-infl ammatory MSC1 phenotype while the 

downstream consequences of TLR3 priming of human 

BMSCs polarized them toward an immunosuppressive 

(MSC2) phenotype. Th is novel MSC polarization para-

digm is based on the consistent but novel outcomes 

observed for MSC1 when compared with MSC2 for 

several parameters, including dissimilar patterns of 

secretion of cytokines and chemokines and diff erences in 

diff erentiation capabilities, extracellular matrix deposi-

tion, TGF-β signaling pathways, and Jagged, IDO and 

PGE-2 expression [29]. Th e most compelling outcome 

was opposite eff ects of each cell type on T-lymphocyte 

activation [29]. Recently, our group has also observed 

that the infusion of MSC1 and MSC2 cells into murine 

models of infl ammatory lung injury had disparate out-

comes. Th e MSC1 cells aggravated the infl ammatory 

injury, while the MSC2 cells were anti-imfl ammatory 

(unpublished observations).

We suggest that an immunosuppressive phenotype has 

been detected for most current BMSC preparations 

because of the manner in which the cells are isolated 

from the host and the way they are expanded in ex vivo 

culture. Furthermore, we propose that the default BMSC 

phenotype must be immunosuppressive to avoid pro found 

and deleterious consequences of a pro-infl ammatory 

MSC1 phenotype on the hematopoietic stem cells that 

BMSCs maintain and support. While circulating or 

quiescent stem/progenitor cells are both equipped to 

respond to environmental cues, they must not actively 

engage immune cells or mediate repair while circulating 

throughout the body or maintaining hematopoietic stem 

cells in the bone marrow niche. In a manner analogous to 

the immature state maintained for monocytes, dendritic 

cells, and other immune cells, BMSCs are immune 

suppressive until a pro-infl ammatory role is required to 

promote tissue repair. More than likely, TLR4-priming is 

not the optimal way to induce the MSC1 phenotype. It is 

expected that a combination of other factors, such as 

IFNs, or direct contact with other pro-infl ammatory cells 

and their microenvironments along the lines of that 

reported by Romieu-Mourez and colleagues [81] and 

Raicevic and colleagues [82] will more readily induce the 

MSC1 phenotype. It also remains to be seen whether 

these newly described phenotypes are found in nature. 

Nonetheless, we believe that a greater understanding of 

the complexities driving the immune modulating proper-

ties of pro-infl ammatory MSC1 and immunosuppressive 

MSC2 phenotypes will allow for more successful and 

eff ective targeted MSC-based therapies.

Conclusions

Current evidence supports the utilization of MSCs for 

the treatment of the infl ammatory component of 

numerous diseases and autoimmune disorders. It is 

evident that the mechanisms by which MSCs enhance 

tissue repair are more complex than originally believed. 

MSCs secrete a wide variety of pro- and anti-infl am-

matory factors that have the potential to aff ect multiple 

processes, such as apoptosis, angiogenesis and infl am-

mation. Our group has defi ned a mechanism by which 

MSCs can undergo molecular signaling to be either anti-

infl ammatory, as widely described, or pro-infl ammatory 

based on the diff erential engagement of TLRs. As the 

application of MSC-based therapy moves forward to the 

Figure 1. Short-term and low-level priming of TLR4 (left side) 

and TLR3 (right side) leads to the polarization of heterogeneous 

BMSC preparations into a pro-infl ammatory MSC1 phenotype 

or an immunosuppressive MSC2 phenotype [29]. The proposed 

agonists for the toll-like receptor (TLR) priming schemes are listed in 

the yellow boxes above the specifi c priming scheme. We speculate 

that MSC1 may contribute to early tissue injury responses while MSC2 

may contribute to later tissue resolution responses based on similar 

contributions by polarized monocytes in wound healing [83-85]. 

Poly(I:C), polyinosinic:polycytidylic acid. Figure adapted from [85].

mesenchymal stem cell, MSC

pro-inflammatory
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immunosuppressive
MSC2

TLR3 priming TLR4 priming 
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clinic, it is essential that we expand our understanding of 

the molecular mechanisms governing both the pro- and 

anti-infl ammatory properties of MSCs so that we can 

enhance their therapeutic effi  cacy.
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