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Introduction
Male infertility is a problem in 7% of all men [1]. In 1696
sperm were first seen under the microscope and called
‘homunculi’ as it was believed that the sperm contained a
miniature human [2]. Three centuries later, the development
of intracytoplasmic sperm injection (ICSI) into an egg has
revolutionized male infertility treatments as part of assisted
reproductive technologies (ARTs) [3,4]. However, many men
with primary testicular defects in sperm production due to
genetic disorders or as a consequence of cancer treatments
are still unable to become biological fathers. The identification
of rat spermatogonial stem cells (SSCs) in 1971 as the
foundation for spermatogenesis and sustaining male fertility
[5] and the introduction of SSC transplantation in mice in
1994 opened new avenues for the field of male infertility
treatments [6]. Since the discovery of the feasibility of SSC
isolation and autotransplantation, it has been demonstrated
in several species, including non-human primates [7]. Brian
Hermann and colleagues [7] recently demonstrated success-
ful autologous and allogeneic SSC transplantations in adult
and prepubertal macaque testes that were previously ren-
dered infertile with alkylating chemotherapy. As a result of
these findings, translation of this technology to human
studies is expected soon. This review focuses on several
areas, including identifying patients that may benefit from
testicular tissue banking to preserve SSCs, recent achieve-
Abstract

Male infertility management has made significant progress
during the past three decades, especially after the
introduction of intracytoplasmic sperm injection in 1992.
However, many boys and men still suffer from primary
testicular failure due to acquired or genetic causes. New
and novel treatments are needed to address these issues.
Spermatogenesis originates from spermatogonial stem cells
(SSCs) that reside in the testis. Many of these men lack SSCs
or have lost SSCs over time as a result of specific medical
conditions or toxic exposures. Loss of SSCs is critical in
prepubertal boys who suffer from cancer and are going
through gonadotoxic cancer treatments, as there is no
option of sperm cryopresrvation due to sexual immaturity.
The development of SSC transplantation in a mouse model
to repopulate spermatozoa in depleted testes has opened
new avenues of research in other animal models, including
non-human primates. Recent advances in cryopreservation
and in vitro propagation of human SSCs offer promise for
human SSC autotransplantation in the near future. Ongoing
research is focusing on safety and technical issues of
human SSC autotransplantation. This is the time to
counsel parents and boys at risk of infertility on the
possibility of cryopreserving and banking a small amount
of testis tissue for potential future use in SSC transplantation.
ments in SSC technology, and concerns that need to be

addressed before applying SSC autotransplantation in the
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clinical setting.

Who may benefit from testicular tissue
preservation and future SSC transplantation?

Malignant diseases
Every year in the United States more than 12,000 children
and adolescents aged under 20 years are diagnosed
with cancer [8]. The overall cure rates of these cancer
patients are approaching 80%; therefore, the number of
childhood cancer survivors is increasing over time [8].
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It is known that either cancer [9] or cancer treatments
[10] may adversely affect male reproduction. Chemo-
therapy and radiotherapy target rapidly dividing cells.
These treatments not only eliminate malignant cells, but
also affect germ cells. In the testis, spermatogonial cells
divide rapidly and are very sensitive to cytotoxic agents,
although the less active stem cells may also be killed
[10]. Even in prepubescent boys, spermatogonial cells
divide [11] and increase in number over time [12]. Thus,
cancer treatments may result in temporary, long-term,
or permanent gonadal failure in male cancer survivors
[10]. In clinical practice, it is important to estimate infer-
tility risk based on cancer type and cancer treatment
protocols for each patient and consult with him and his
parents (for prepubertal and adolescent patients) on his
infertility risk (Tables 1 and 2) [13-15]. In adult men,
semen cryopreservation before starting chemotherapy or
radiotherapy is clinically approved as an efficient solu-
tion to preserve fertility by using ART procedures. Live
births have been reported after insemination of stored
sperm even after freezing for a period of 28 years [16].
In immature boys, spermatogenesis has not begun;
therefore, storing testicular tissue prior to cancer treat-
ments for future SSC autotransplantation could be an
option (Figure 1).
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Non-malignant diseases need cytotoxic treatments
In addition to malignant diseases, certain benign
hematological disorders, such as myelodysplasia, sickle
cell disease, aplastic anemia, thalassemia major, and Fan-
coni anemia, and severe autoimmune diseases unrespon-
sive to immunosuppressive therapy, such as juvenile
idiopathic arthritis, juvenile systemic lupus erythemato-
sus, systemic sclerosis and immune cytopenias, necessi-
tate administration of high dose chemotherapy [17-19].
Table 1 Estimation of infertility risk in different types of canc

High risk (>80%) Intermediate risk
(20-80%)

Low

Any cancer requiring bone marrow transplant/
stem cell transplant

Acute myeloblastic
leukemia

Acu

Brain tumor Brain tumor Ger
rad

Germ cell tumors Hepatoblastoma Nep
rad

Hodgkin lymphoma Hodgkin lymphoma Ret

Neuroblastoma Neuroblastoma Tes

Nephroblastoma Non-Hodgkin
lymphoma

Wil

Non-Hodgkin lymphoma Sarcoma

Sarcoma Testicular cancer

Testicular cancer Wilms’ tumor
This often leads to severe, dose-dependent and sometimes
irreversible spermatogenic damage [20]. Dependent on
treatment types (Table 2), these patients may also need
to be counseled for fertility preservation.

Klinefelter syndrome
Klinefelter syndrome (KS; 47,XXY) is a progressive tes-
ticular failure causing small firm testes, androgen defi-
ciency, and azoospermia [21]. This syndrome has been
reported in 1 out of 660 live male births [22] and repre-
sents approximately 15% of azoospermia in infertile men
[23]. KS cases have normal sexual hormones during
childhood and initiate puberty at the same age as normal
children; however, around mid-puberty the testes begin
to deteriorate with the loss of germ cells [24]. Successful
testicular sperm extraction is expected in half of KS pa-
tients [24]; a recent study showed 70% success for
microscopic testicular sperm extraction in 10 cases
where the males were aged between 14 and 22 years
[25]. Preserving testicular tissue containing SSCs before
puberty may help some KS boys in the future [26]. Less
than 10% of KS is diagnosed before puberty [22]; there-
fore, a cost-effective and easy method (for example,
PCR) to screen these children before puberty is needed.

Cryptorchidism
Failure in congenital testicular descent - cryptorchidism -
is the most frequent genital abnormality, affecting ap-
proximately 1% of mature births [27]. In a study of 89
cryptorchid boys who underwent bilateral testis biopsy
during orchiopexy operation, 70% of scrotal testes had
an impaired transformation of Adark spermatogonia, in-
dicating that cryptorchidism is a bilateral disease [28].
Up to 20% of boys with unilateral cryptorchidism expe-
rience fertility problems and this figure increases up to
er

risk (<20%) Very low/
no risk

Unknown risk

te lymphoblastic leukemia Thyroid
cancer

Chronic myeloid
leukemia

m cell tumors (without
iotherapy)

Colon cancer

hroblastoma (without abdominal
iotherapy)

Gastrointestinal
stromal tumor

inoblastoma Head and neck
cancer

ticular cancer Non-small cell lung
cancer

ms’ tumor Pancreatic cancer
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Table 2 Estimation of infertility risk using different types of cytotoxic treatments

High risk (>80%) Intermediate risk (20-80%) Low risk (<20%) Very low/
no risk

Any alkylating agent plus total body irradiation, pelvic
radiation, or testicular radiation (for example, procarbazine,
nitrogen mustard, cyclophosphamide)

BEP × 2–4 cycles (bleomycin,
etoposide, cisplatin)

ABVD (doxorubicin,
bleomycin, vinblastine,
dacarbazine)

Radioactive
iodine

Busulfan (≥600 mg/m2) Carboplatin cumulative dose ≤2 g/m2 CHOP (cyclophosphamide,
doxorubicin, vincristine,
prednisone)

Testicular
radiation dose
(<0.2 Gy)

Busulfan/cyclophosphamide Cisplatin cumulative dose
<400 mg/m2

COP (cyclophosphamide,
vincristine, prednisone)

CBV (cyclophosphamide, BCNU, etoposide), BCNU cumulative
dose ≥300 mg/m2

Testicular radiation dose (scatter
from abdominal/pelvic radiation)
(1–6 Gy)

NOVP (mitoxantrone,
vincristine, vinblastine,
prednisone)

ChIVPP (chlorambucil, vinblastine, prednisone, procarbazine) OEPA × 2 cycles (vincristine,
etoposide, prednisone,
doxorubicin)

ChIVPP/EVA (chlorambucil, vinblastine, prednisone,
procarbazine, doxorubicin, vincristine, etoposide)

Testicular radiation dose
(0.2-0.7 Gy)

COPP × 6 cycles (cyclophosphamide, vincristine, procarbazine,
prednisone)

COPP/ABVD (cyclophosphamide, vincristine, procarabazine,
prednisone, doxorubicin, bleomycin, vinblastine, dacarbazine)

Cranial/brain radiation ≥40 Gy

Cyclophosphamide >7.5 g/m2

Cyclophosphamide as bone marrow transplant conditioning

Cyclophosphamide (19 g/m2) plus total body irradiation

MOPP > 3 cycles (nitrogen mustard, vincristine, procarabazine,
prednisone)

MOPP/ABVD (nitrogen mustard, vincristine, procarabazine,
prednisone, doxorubicin, bleomycin, vinblastine, dacarbazine)

MVPP (nitrogen mustard, vinblastine, prednisone,
procarabzine)

Procarbazine cumulative dose ≥4 g/m2

Testicular radiation dose >2.5 Gy in adults

Testicular radiation dose ≥6 Gy in children

Total body irradiation

Sadri-Ardekani and Atala Stem Cell Research & Therapy Page 3 of 92014, 5:68
http://stemcellres.com/content/5/3/68
70% for boys with bilateral cryptorchidism [29]. Pater-
nity rate decreases significantly in corrected bilateral
cryptorchidism (65%) compared with unilateral cryp-
torchidism (89.7%) and control men (93.2%) [30]. Be-
cause of gradual diminishing germ cell number in these
patients, it may be an option to store a portion of the
testis biopsy, which can be harvested during the orchio-
pexy operation [31,32].

Testicular tissue biopsy and cryopreservation
Testicular biopsy is an open surgical procedure and
needs to be performed under general anesthesia in chil-
dren. Retrieving tissue from only one testis is suggested
to minimize manipulation [14] and the size of tissue
may vary between 80 and 250 mm3 based on testicular
size in the different age groups [33]. To minimize the
risk of general anesthesia, this process should be per-
formed at the same time as other clinical procedures
(for example, bone marrow biopsy, central line replace-
ment or orchiopexy) when possible. Based on our [34]
and other groups’ experiences [14,35] no major surgical
complications occurred during or after testicular biopsy.
Long-term follow-up of cryptorchid boys who had
undergone testicular biopsy during orchiopexy showed
no negative effects such as producing anti-sperm anti-
body or testicular scars [32]. Onset of sperm production
(spermarche) is an early pubertal event. The median age
of spermarche is estimated to be around 13 to 14 years,
with a range between 11 and 17 years [36,37]. Thus, we
recommend searching for testicular sperm in specimens
from all boys aged 10 years or older, since freezing tes-
ticular sperm in glycerol-based medium [38] for use in
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Figure 1 Schematic diagram showing testicular tissue cryopreservation and future spermatogonial stem cell autotransplantation to
restore male fertility in high-risk patients.
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ICSI is available in most ART laboratories [39]. Proto-
cols for freezing small samples (2 to 4 mm3) of imma-
ture human testicular tissue using dimethyl sulfoxide
(DMSO) as the main cryoprotectant showed good struc-
tural integrity of testicular tubules, and pre-tubular and
intra-tubular cells after thawing [11,40]. Xenotransplan-
tation of cultured DMSO frozen SSCs from immature
human testes showed the migration ability of SSCs to
the base membrane of mouse seminiferous tubules with-
out differentiation to mature germ cells [34]. The same
cryopreservation method has been used for storing mice
SSCs for longer than 14 years. Fertile offspring were de-
rived after transplanting these long-term stored SSCs
[41]. Our current testicular tissue banking protocol at
Wake Forest Baptist Health for boys at risk of infertility
indicates that, if testicular sperm are found, then half of
the tissue will be frozen (Figure 2) in routinely used egg
yolk-glycerol-based cryopreservation medium to pre-
serve sperms for ICSI and the other half will be frozen
to preserve the SSCs in DMSO-based medium for future
culture and transplantation.

Isolation and in vitro propagation of
spermatogonial stem cells
Spermatogonial stem cell isolation
The first successful isolation of human SSCs was re-
ported from six infertile adult men in 2002 [42]. In that
study, isolated human SSCs were able to colonize and
survive for 6 months in mice recipient testes even after a
freeze-thaw procedure. Numbers of colonized human
SSCs in mouse seminiferous tubules were evaluated up
to 6 months after transplantation. Observation of clus-
ters of human SSCs about 1 month after transplantation
suggested the proliferation of these cells in mouse testes.
Human cells remained up to 6 months in mouse testes,
although their numbers significantly decreased by
2 months after transplantation. No meiotic differenti-
ation of human germ cells in mouse testes was observed
[42]. Recently, in a study of prepubertal boys diagnosed
with cancer, SSCs were isolated and demonstrated stem
cell activity after xenotransplantation to mouse testes
similar to that seen in human adult SSCs [43]. This
study used biopsies from nine boys aged 2 to 10 years
and a preliminary estimation indicated that spermato-
gonial cells comprised about 3% of the cell population
from these biopsies [43]. The number of SSCs in the
testis is very low. In mouse testis only 0.03% of germ
cells and 1.25% of spermatogonial cells are estimated to
be stem cells [44,45]. In contrast to rodents, human
spermatogonial cells can be divided into two subgroups,
Apale and Adark, according to their nuclear staining with
hematoxylin after Bouin’s fixation [46]. Adark spermato-
gonia in normal circumstances are quiescent cells and
are thought to be reserve (stem) cells [45]. Current SSC
isolation methods are based on two-step enzymatic di-
gestion [47]. Investigators have enriched human sperm-
atogonial cells using magnetic activated cell sorting
(MACS) with markers such as GFRA1+ [48], GPR125+

[49], SSEA4+ [50], and HLA-ABC−/CD9+ [51] or using
fluorescence-activated cell sorting (FACS) by isolating
EpCAM+/HLA-ABC−/CD49e− cells [52]. Ideally, isola-
tion of pure SSCs is expected, but no specific marker
has been found to identify the stem cells in testis [53].
Finding suitable marker(s) is a formidable task [54].

In vitro propagation
In immature boys, the size of the testis is small with a rare
population of SSCs; therefore, isolation of these cells from a
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Figure 2 Testicular sperm viability after freeze and thaw. Live sperms were stained with Calcein (green fluorescent). (A) Bright field;
(B) fluorescent; (C) merged. A LIVE/DEAD Sperm Viability Kit (L-7011 Invitrogen, Life Technologies Ltd, Paisley, UK) was used for staining thawed
testicular sperms. Testicular tissue for research was obtained from transplant donors through the National Disease Research Interchange.
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small testicular biopsy yields a very limited number of stem
cells. Based on animal studies, SSC transplantation efficiency
depends on the number of transplanted SSCs, with an almost
linear correlation [55]. Therefore, increasing the number of
SSCs in vitro is necessary before transplantation. Successful
in vitro culturing of SSCs has been reported in several species,
including mouse [56,57], rat [58], bovine [59], hamster [60],
and dog [61]. Recently, in vitro propagation of human SSCs
from both adult [62] and prepubertal [34] testes was estab-
lished. In these systems, human SSCs are supported by a
A

Figure 3 Germ line stem cells cluster in human testicular cell culture.
previously [34,62]. (A) Bright field; (B) scanning electron microscopy. Testicu
the National Disease Research Interchange.
feeder layer from the same patients’ testicular somatic cells.
Germ line stem cell clusters formed within 2 to 4 weeks of
culture (Figure 3). Xenotransplantation of human testicular
cells from different time points of in vitro culture into nude
mice testes showed that human SSCs could be maintained
in vitro for more than 15 weeks with a doubling time of 3 to
7 days [34,62]. Optimization of this culture system based on
US Food and Drug Administration regulations and current
good tissue practice requirements are imperative before use
in a clinical application.
B

50 µm

The presence of these germ line clusters has been described
lar tissue for research was obtained from transplant donors through
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Safety and technical issues of spermatogonial
stem cell transplantation
Genetics and epigenetics stability
Harvesting testicular tissue via biopsy, freezing and
thawing the tissue, and cell isolation and culturing are
all processes that may affect the integrity of SSCs. Alter-
ations in manipulated cells may occur in the genome, in
the epigenome, or in both [63-65]. There are reports
that show the genetic stability of other stem cell popula-
tions during in vitro culture [66,67]. Since SSCs are the
cells that transmit genetic information to the next gene-
rations, concerns about SSC stability are much more im-
portant than those about somatic cells. A study on
transplantation of isolated SSCs from C57Bl/WBRe
donor mouse (without culturing) to the testes of W/Wv-
mice [68] showed normal development (length and
weight) compared with controls for first and second
generation offspring. DNA extracted from post-
transplantation spermatozoa, liver, kidney and placenta
revealed no differences in methylation patterns of genes
for Igf2, Peg1 and a-Actin between offspring of trans-
planted and control mice [68]. Kanatsu-Shinohara and
colleagues [69] showed that in vitro expansion of mouse
SSCs over 24 months continued with normal karyotype
and stable androgenetic imprinting. The offspring of
recipient mice were fertile and also had a normal im-
printing pattern. However, genetic alterations or epi-
genetic patterns of isolated and cultured human SSCs
have not yet been determined.

Contamination with cancer cells
The most important concern regarding SSC autotransplant-
ation is the risk of reintroducing malignant cells to the
cancer survivor. This is very important in non-solid
hematopoietic cancers, as malignant cells can migrate
through the blood circulation and infiltrate the testis
[70]. It has been demonstrated that intraluminal injec-
tion of as few as 20 leukemia cells into the testes of re-
cipient rats could induce disease relapse in three out of
five animals [71]. A few studies have tried to eliminate ma-
lignant cells from mouse, non-human primate and human
testicular cell suspensions [52,72-75]. These studies used
different surface markers for MACS or FACS of contami-
nating cells. Currently there is no specific marker for puri-
fying SSCs [76] and these cells share several biomarkers
with other stem cells and cancer cells, especially
hematopoietic cells [77]; therefore, the sorting methods
have not yielded tumor cell-free populations. The most
recent study attempting to remove human leukemia cells
from testicular cells using the markers EpCAM+/HLA-
ABC−/CD49e− showed some progress [52]; however, the
bioassay method used for post-sorting detection of
leukemia cells was not sensitive enough (0.2% sensitivity)
and the false negative rate was high (>60%) [52,75].
Using other detection methods with higher sensitivity,
such as minimal residual disease PCR (up to 0.0001%
sensitivity) [78] or tumor cell imaging (to detect as
few as 3 to 10 cells) [79] are recommended. Our re-
cently published pilot study using minimal residual
disease PCR to track leukemia cells in a human SSC
in vitro propagation system showed leukemia cells
were eliminated after 26 days of co-culturing with
spermatogonial cells [80].
Spermatogonial stem cell injection
A mouse model for injection of SSCs into the testis is
possible with the microinjection of the SSCs into the
seminiferous tubules, into the rete testis, or into the ef-
ferent duct [81]. However, in larger animals like bovine,
monkey and even human cadaver, studies have shown
that injection of SSCs into the seminiferous tubules or
the efferent duct was not successful [82]. This is because
of high resistance of the lamina propria and coiled semi-
niferous tubules in larger animals. The most promising
models for SSC injection into human testis is ultrasound-
guided injection into the rete testis [82,83]. In the most
recent study on autopsied human testes, injecting 8 to
16 million cells in a volume of 800 to 1,400 μl via a 23
gauge needle could fill up to 40% of the seminiferous
tubules in 1 to 2 minutes [83]. There is only one re-
ported clinical trial of SSC autotransplantation, in seven
cancer survivors [84], but the details of this study and
patient follow-up data have not been published. Further
investigation is necessary to optimize the injection pro-
cedure as well as compare ultrasound-guided versus
open surgery for SSC transplantation.
Points of view of patients and their families
It is important to understand how patients and their
families feel about fertility preservation and testicular
tissue banking. Psychosocial studies clearly demonstrate
a high incidence of negative reactions to infertility and
its negative effect on overall life satisfaction and well-
being [85]. The main target groups for testicular tissue
cryopreservation for future SSC autotransplantation are
children, which presents difficulties for discussion of fu-
ture reproduction and family planning. Childhood can-
cer survivors who transit into adulthood express
concerns about fertility and fathering children [86]. At
least half of the parents of boys who suffer from cancer
agree with performing testicular biopsy to preserve SSCs
[35,87,88]. Parents choose fertility preservation even if
the chance of infertility is low (≤20%) and the success
rate of future SSCs transplantation will also be low
(≤20%) [88]; these findings show the great importance of
fertility preservation for families.
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Note: This article is part of a thematic series on Stem cells in
genitourinary regeneration edited by John Jackson. Other articles
in the series can be found online at http://stemcellres.com/series/
genitourinary.
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Follow-up after spermatogonial stem cell
transplantation
Both childhood and adult cancer survivors are interested
in understanding the risks of passing on genetic damage
capable of causing adverse outcomes in their children
[89]. Reviewing a cohort of 8,670 children born between
1994 and 2004 with a paternal history of cancer versus
17,690,795 children without a paternal history of cancer
showed a higher incidence of major congenital abnor-
malities in the offspring of male cancer survivors (3.7
out of 100) than in those of fathers with no history of
cancer (3.2 out of 100) [90]. Around 5% of children (508
out of 8,670) were conceived using ART, either in vitro
fertilization (5%) or ICSI (95%), with the higher risk of
abnormalities with in vitro fertilization (two times more)
compared to ICSI or natural conception [90]. Previous
studies have shown no significant differences in the out-
come of pregnancy in cancer survivors [91,92]. However,
ICSI (when it is required) and prenatal diagnosis tests
(for example, amniocentesis) during pregnancy in cancer
survivors may overcome this small risk.
As clinical trials of SSC autotransplantation are initi-

ated, it is necessary to monitor the health of recipient
men. Like other ART treatments, pregnancy and the
offspring should be followed for any major abnormalities.

Conclusion
SSCs are germ line stem cells that reside in the base-
ment membrane of the seminiferous tubule in the testis.
They are the foundation of spermatogenesis for the pro-
duction of sperm after puberty. In 1994 Brinster’s group
[6] reported a SSC assay in mice that shows the ability
of these cells to generate a colony of spermatogenesis
after transplantation in the seminiferous tubules of a re-
cipient male. Since then, researchers in the field of male
infertility have searched for new clinical tools to help
more men who suffer from primary testicular failure.
Immature boys at risk of losing their SSCs, mostly can-
cer patients, are the main target group that may benefit
from testicular tissue cryopreservation and SSC auto-
transplantation. Progress in the field of SSC transplant-
ation in animal studies, including non-human primates,
has been shown. Effective freezing methods for adult
and prepubertal testicular tissue are available and re-
cently in vitro propagation of human SSCs with the abil-
ity to colonize the basement membrane of testes has
been established. Therefore, translation of SSC auto-
transplantation to humans is expected to be possible in
the near future. The families of prepubertal and adoles-
cent male patients are eagerly awaiting fertility preserva-
tion by means of testicular tissue banking and utilization
in future clinical applications. Simultaneous to the on-
going research on safety and technical issues of human
SSC autotransplantation, it is necessary to counsel
parents and the boys at risk of infertility on the possibi-
lity of cryopreserving a small testis biopsy in experimen-
tal SSC banking.
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