
Introduction

Recently, we published a study demonstrating that a 

deletion of the gene p21CIP/WAF converts a non-regener-

ating strain of mouse to one capable of epimorphic 

regeneration and has provided a unique opportunity to 

uncover some of the unknowns of this process in 

mammals. Since p21 is involved intricately in so many 

cellular processes, it is not clear at this time how deletion 

of this gene results in such a healing phenotype. Th is 

review will discuss our results, how our fi ndings relate to 

other studies, and speculation as to the role of p21 in 

regeneration.

A mammalian model of regeneration, the MRL 

mouse

In 1998, the MRL (Murphy Roths Large) mouse, 

generated from cross-breeding AKR, C3H, C57BL/6(B6), 

and LG strains of mice [1], was shown to be able to close 

ear punches without showing residual signs of injury or 

scarring [2]. Multiple tissues were perfectly replaced, 

cartilage re-grew, and hair follicles reappeared. Further-

more, this type of perfect multi-tissue healing, known as 

epimorphic regeneration, occurred with the formation of 

a blastema-like structure that had been shown to be key 

to amphibian limb regeneration [3-5]. Th is phenomenon 

had earlier been seen in rabbit ear holes [6-8], and 

furthermore, a blastema-derived structure had also been 

described during antler re-growth [9]. Th e amphibian 

and mammalian ear hole regeneration processes have 

many features in common, including rapid re-

epithelialization of the wound [2], elimination of the 

basement membrane between the epidermal and dermal 

tissue layers [10,11], blastema formation, re-growth of 

cartilage and hair follicles, and scarless healing [2,12,13]. 

However, the existence of an inbred mouse model 

allowed this process to be genetically approachable. It 

was also determined that one of the strains used to 

generate the MRL mouse, the LG/J mouse, contributed 

the regeneration phenotype [14].

Ear hole closure has lent itself exceedingly well to 

genetic studies as this is a wound that is easy to access 

and measure and has proven to be a highly quantitative 

trait [15-17]. Recently, making use of an advanced 

intercross line (LG, SM F34 AIL) employing 1,200 mice 

and 3,600 single nucleotide polymorphisms [18], 18 

quantitative trait loci were identifi ed for ear hole closure 

with small intervals from 0.661 to 7.141 Mb in length, 

which essentially reduced the healing intervals 10- to 

50-fold from studies using F2 mice [15] (JM Cheverud et 

al., manuscript in preparation). Th is has allowed a more 

focused analysis of candidate genes. Further narrowing of 
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these loci and testing of candidates using gene knockouts 

should lead to the fi nal identifi cation of these genes.

Besides ear hole closure, multiple organ and injury 

systems have extended the MRL mouse’s unusual healing 

properties. Th ey include regenerative studies in the heart 

[19-21], central nervous system stem cells and tissue 

[22-24], cartilage [25], cornea [26], digit [27,28] and myo-

metrial healing [29]. Dorsal skin wound healing, which 

involves skin contracture, has been reported to be no 

diff erent or even worse in the MRL compared to controls 

[30,31]. However, a recent study shows that if the wound 

has a syngeneic or allogenic skin transplant, the MRL 

shows far better healing than the control [32]. One 

possible explanation for the healing diff erences in 

diff erent systems is that wound contracture, involving 

myofi broblasts or cells expressing Sma-1 (smooth muscle 

actin), known to be responsible for scarring, is diff erent 

in the MRL. Preliminary studies suggest this [33] (D 

Gourevitch, K Bedelbaeva, unpublished data). Th us, the 

wound site and type of wound need to be considered in 

the MRL’s healing properties.

G2/M cell cycle accumulation of regenerating cells

Th e cells derived from the ear of regenerating and non-

regenerating mice also show signifi cant diff erences from 

each other and represent what is seen in vivo. MRL 

fi broblast-like cells from uninjured ears display an 

uncommon metabolic profi le characteristic of an 

embryonic-type aerobic glycolysis, a feature of the adult 

MRL mouse itself, versus the more common metabolic 

state - oxidative phosphorylation - as seen in the B6 

mouse [34]. Th ese cells express stem cell markers similar 

to adult MRL tissue that expresses these markers [34]. In 

a separate study, cells derived from the injured MRL ear 

blastema expressed stem cell markers as found in vivo 

[35] and displayed highly proliferative and migratory 

responses in vitro similar to human multipotential 

progenitor cells in this study [36].

Th e rapid growth rate of fi broblast-like cells from the 

uninjured MRL ear was noted early on and examination 

of cell cycle regulation comparing healer MRL to non-

healer B6 cells showed that the healer cells had an 

unusual accumulation of cells in G2/M [33]. A likely 

explanation of such G2/M accumulation or potential 

arrest was a DNA damage response and this was 

supported by an increased p53 response in the MRL [33] 

and confi rmed with data showing that foci of γH2AX and 

TopBP1, a phosphorylated histone and a protein re-

cruited to sites of DNA damage, respectively, were highly 

increased in MRL cells and tissue [33]. DNA damage 

itself was tested using the comet assay and found in 

nearly 90% of healer cells compared to 5% of non-healer 

cells, showing both single-strand and double-strand 

breaks. Furthermore, the DNA repair protein RAD51 

was increased in healer cells, suggesting that error-free 

homologous recombination was being used [33]. Th e 

cause of the DNA damage is still unclear, but the lack of 

the cell cycle protein p21Cip1/Waf1 discussed below suggests 

a replicative stress mechanism.

Th ese results agree with many reports in the literature 

that G2/M accumulation is associated with regeneration 

in examples ranging from hydra [37] to amphibian [38] to 

mammalian liver [39,40]. Th e literature also shows that 

cells undergoing blastema formation synthesize DNA but 

have a low mitotic index, indicating an accumulation 

between S and M and implicating G2 [41-47]. Multiple in 

vitro studies have carefully explored cell cycle arrest and 

the factors involved in the re-entry of cells into S phase of 

the cell cycle and accumulation in G2, as seen in 

multinucleated muscle myotubes and myofi bers from 

regenerating amphibian limbs [48], in multinucleated 

mammalian myotubes generated from rat C2C12 cell line 

myoblasts, and in primary mouse myoblasts [49-51].

In MRL ear-derived cells, the fact that DNA damage 

was so widespread made one question why an accumu-

lation of cells was seen in G2/M and not in G1/S. Th is led 

to an examination of G1 cell cycle regulatory proteins. 

Th e fi rst to be examined, the CDKN1A or p21Cip1/Waf1 

protein [52], was found to be repressed in these cultured 

cells. Examination of similar ear-derived cells from a 

CDKN1A-defi cient mouse [33] showed the same 

phenotype as MRL cells with increased DNA damage, 

γH2AX expression, and G2/M accumulation. But most 

striking was the fact that this mouse could fully close ear-

hole injuries at least as well as the MRL mouse [33]. 

Th ere have been other mice that possess the ability to 

partially heal ear holes, including nude mice [53], mice 

expressing the transgene AGF (angiopoietin-related 

growth factor) in keratinocytes [54], and mice selected for 

infl ammatory potential [55]. However, what was surprising 

to us was that deletion of this single gene, as predicted 

from our in vitro ear dermal cell model, could actually 

result in the full MRL epimorphic regeneration phenotype.

The role of p21CIP1/Waf1, regeneration, and the 

retinoblastoma protein

Earlier studies have examined the role of p21 in regenera-

tion of the mammalian liver. Gene expression of p21 

plays a role in hepatic regeneration by both p53-

dependent and p53-independent control mechanisms 

[56]. Transgenic mice that over-express p21 produced 

large polyploid nuclei in a portion of the hepatocytes and 

the regenerative capacity of the livers was halted [57]. 

Over-expression of STAT-3 with resulting p21 upregu-

lation impairs regeneration in fatty livers [58]. Consistent 

with this picture, repression of the p53/p21 pathway was 

shown to enhance liver regeneration [59]. Such studies 

parallel our recent fi ndings [33].
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Th e overall understanding of the functions of p21 can be 

quite overwhelming considering the complexity of 

functions in which this protein has been implicated. p21 is 

involved in the response to cellular stresses, such as DNA 

damage, oxidative stress, cytokines, mitogens, tumor 

viruses, and anti-cancer agents, and can have tumor 

suppressive activities and oncogenic capabilities depend-

ing on the cell type and context [60,61]. For example, p21 

is transcriptionally regulated by p53 for tumor suppressor 

activity and as an inhibitor of cell cycle progression 

through the inhibition of cyclin-dependent kinase (CDK)-

cyclin complexes and proliferating cell nuclear antigen, 

which can lead to diff erentiation, apop tosis, or senescence. 

Increasing this complexity is the fact that p21 can regulate 

gene expression and other cellular events, such as 

autophagy and a DNA damage repair response, through 

protein-protein interactions that depend on the cell type, 

subcellular localization, expres sion levels, protein stability, 

and post-translational modifi cations [62-66].

So which of these functions are involved in the re-

genera tion phenotype seen in the p21-/- mice? Some 

indication may come from in vitro studies in other re-

generating systems. For example, adult urodele amphi-

bians can regenerate limbs through a process that 

involves loss of diff erentiation markers, cell cycle re-

entry, proliferation, formation of a blastema, and diff er-

en tiation into adult tissue [12]. In an amphibian in vitro 

model of skeletal muscle regeneration, retinoblastoma 

(Rb) protein plays a predominant role in cell cycle re-

entry through phosphorylation by CDK4/6 [67]. Th is 

process requires serum to stimulate entry of the 

quiescent nuclei of multinuclear myotubes into S-phase 

with a serum-derived thrombin-activated factor being 

necessary for Rb hyperphosphorylation, resulting in its 

‘inactivation’ [48,68]. Th ese cells enter S phase but arrest 

and do not separate into single cells, which would allow 

further progression of the cell cycle through mitosis. 

However, there are confl icting reports about mammalian 

cells. Myotubes from an Rb-/- mouse are capable of cell 

cycle re-entry and show DNA synthesis upon serum 

stimulation but no mitosis in one study [50] but no cell 

cycle re-entry in another [51]. In a separate study using 

mammalian myotubes generated from the rat C2C12 

myoblast line, newt regeneration blastema extract led to 

myotube cellularization to smaller myotubes and pro-

liferating mononucleate cells, suggesting de-diff eren-

tiation with reduced expression of mature muscle cell 

markers [49]. In addition, a recent report using primary 

myoblasts [69] suggests that another factor in addition to 

Rb, p19arf, must be inactivated for cell cycle re-entry and 

de-diff erentiation in postmitotic mammalian muscle. Th e 

tumor suppressor protein p19arf acts as a regeneration 

suppressor and is not found in regenerative vertebrates, 

suggesting that it has interesting potential as a key to 

mammalian regeneration. Th us, Rb inactivation has been 

shown to be important in both amphibian and mam-

malian regeneration in vitro.

Th e p21 protein, its major role being a CDK inhibitor 

found on chromosome 17 in the mouse, is known to 

block proliferation by preventing the phosphorylation of 

Rb and the transcription of cell cycle-regulated pro-

proliferative proteins. Th e p21 protein binds to cyclin-

CDK (2/4) complexes, not allowing them to function as 

kinases. Th ey in turn cannot phosphorylate Rb, which 

remains bound to E2F, a transcription factor responsible 

for proliferation, eff ectively blocking E2F function. Th us, 

p21 activity directly leads to suppression of cell cycle 

transit and the loss of p21 should promote E2F activity, 

lead to enhanced DNA synthesis and potentially to de-

diff erentiation. Rb function, then, in the studies above 

should be directly aff ected by p21 activity.

Not surprisingly, p53 and p21 have been shown to 

prevent the transition from fi broblasts to induced 

pluripotent stem cells [70-72]. Th e level of de-diff er-

entiation in the p21-/- mouse is being further explored, 

although we have previously reported that stem cell 

markers are over-expressed in MRL tissue [34].

The role of p53, senescence, and transforming 

growth factor-β in regeneration

As mentioned above, we found that p53 was up-regulated 

in MRL mouse ears, though p21 was absent. Is there a 

role for p53 in regeneration? Unlike the p21-/- mouse, 

which is a complete regenerator, p53-/- mice show no 

regenerative capacity [73]. Th is fi nding established a p53-

independent function of p21 that is important for 

regeneration. However, MRL.p53-/- crosses showed not 

only healing rates similar to or better than the MRL itself 

but also showed enhanced diff erentiation in the form of 

increased chondrogenesis and adipogenesis [73]. Th e 

major role played by p53 as the ‘guardian’ of the genome 

is due to its ability to respond to DNA damage and 

cellular stress by inhibiting cell cycle progression and 

then regulating DNA repair, cell cycle control, apoptosis, 

diff erentiation, autophagy induction, and senescence. It is 

not clear which of these functions or lack thereof could 

be responsible for the enhanced diff erentiation observed 

in MRL.p53-/- mice [64,71,74-79]. One study suggests that 

removal of p53 allows for an accumulation of cells with 

elevated levels of DNA damage (on a repair-defi cient 

background mouse), which delays hair follicle renewal 

and regeneration [80,81]. However, we observed hair 

follicle formation in our MRL/p53-/- mice [73]. Further 

regeneration studies on diff erent tissue types need to be 

performed in order to determine the role of p53 in 

regeneration.

One potential area of interest are the roles of p21 and 

p53 in both diff erentiation and cellular senescence at 
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wound sites. It has been shown that elimination of p21 in 

mouse stem cells with dysfunctional telomeres, a marker 

for senescence induction, increases stem cell function 

and the life span of these mice without an increase in 

cancer formation, providing a direct role for p21 in both 

stem cell diff erentiation and senescence [82]. One direct 

link for p21 in diff erentiation and senescence is sup pres-

sion by the Twist proteins, major regulators of embryo-

genesis [83]. Th e Twist proteins inhibit p21 in a p53-

independent manner and promote epithelial-mesen-

chymal transition and suppress cellular senescence [84].

Th e two major pathways for inducing senescence in 

cells of multiple tissues are p53/p21 [85-91] and p16ink4a 

[75,92-95]. In an earlier paper, we suggested that senes-

cence was not a factor in MRL regeneration because of 

the lack of p53 requirement [73]. However, there is, in 

fact, evidence that p21 can induce senescence in the 

absence of p53 [87,96-98] as well as p53-mediated p21-

independent activation of senescence [99-101]. It has 

been suggested that reactive oxygen species are necessary 

to maintain the senescence phenotype and that both p16 

and p21 are involved [99,102,103]. Actually, we previously 

reported that reactive oxygen species levels are decreased 

in the MRL mouse [34], consistent with an aerobic 

glycolytic metabolism, which argues against senescence 

playing a functional role. In addition, the protein RhoD, 

which is required for transformation by the oncogenic 

protein Ras, is responsible for suppressing p21 induction 

and subsequent senescence [104,105]. Th e gene ID1 has 

been shown to repress HRAS-mediated senescence in 

the presence of increased amounts of p21 [106], arguing 

the other way. Recently, a publication showed that the 

matricellular protein CCN1, which is expressed at the 

sites of wounds, induces senescence through p53 and 

actually helps to prevent fi brosis during tissue repair 

[107]. In this case, however, the healing is tissue repair 

with scarring and not blastema-induced scarless re-

genera tion. Th us, the connection between senescence 

and regeneration, and its diff erence compared to onco-

genesis, is yet to be determined.

Another major regulator of p21 is transforming growth 

factor (TGF)-β1, which is involved in anti-proliferation 

and diff erentiation [108]. TGF-β1 controls proliferation, 

diff erentiation, migration, and apoptosis in embryonic 

and adult tissue through the Smad3 pathway [109-113]. 

Multiple studies in mutant mice lacking the TGF-β1/

Smad3 pathway have implicated a regeneration pheno-

type in mice: mice lacking TGF-β1 show an increase in 

wound closure and epithelialization [114]; transgenic 

mice null for Smad3 show increased re-epithelialization 

and tissue renewal [115]; and Smad7 over-expression 

leads to Smad3 down-regulation and to enhanced liver 

regeneration through the TGF-β/Smad3/p21 pathway 

[116]. Smad3 has been implicated as a candidate gene in 

our genetic mapping studies of healer MRL and parental 

LG mice [15]. Contrary to these results, other transgenic 

studies on TGF-β1-null mice showed malfunctions in the 

repair of excisional back skin wounds due to altered 

infl ammatory responses [117-119]. Our studies have 

shown that a TGF-β1/Rag1 double knockout mouse is a 

partial healer [73]. An interesting fact is that TGF-β1 

enhances Sma-1 production and myofi broblasts 

associated with scarring [120] and reduces regenerative 

healing, whereas the TGF-β isoform TGF-β3 enhances 

scar-free healing [121].

Conclusions

Th e MRL mouse is the fi rst genetically dissectible and 

molecularly tractable mammalian model of regeneration 

of multiple tissues in a single organism. It establishes the 

fact that regenerative capacity has not been lost to 

mammals through evolution but remains as a cryptic 

trait, which can be activated by the deletion of a single 

gene, p21. Th us, the p21-null mouse now should become 

a ‘single gene’ standard model for mammalian regenera-

tive studies.

Th e lack of p21 may act to enhance the regenerative 

response in various ways. It could alter DNA damage and 

checkpoint responses, leading to enhanced proliferation. 

It could reduce TGF-β signaling, leading to reduced scar 

formation, and alter diff erentiation patterns. It could lead 

to lack of senescence and reduced cytokine responses. It 

could support progenitor cell stability as seen in induced 

pluripotent stem cell formation.

Besides determining exactly which function of p21 and 

its absence is responsible for enhanced ear hole closure, it 

will also be important to defi ne the critical pathways in 

the MRL mouse that actually lead to p21 down-regulation 

and regeneration.
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